FastDriveVLA

搜索文档
面向量产VLA!FastDriveVLA:即插即用剪枝模块,推理加速近4倍
自动驾驶之心· 2025-08-23 16:03
核心观点 - 提出FastDriveVLA框架,通过重建式视觉token剪枝技术,在50%压缩率下保持97.3%的自动驾驶规划性能,显著降低计算开销 [5][43] - 设计即插即用剪枝器ReconPruner,结合对抗式前景-背景重建策略,增强前景token辨识能力 [5][20][43] - 构建nuScenes-FG数据集,包含24.1万张图像-掩码对,覆盖六视角车载摄像头,提供细粒度前景分割标注 [6][15][43] 技术背景与行业现状 - 端到端自动驾驶方案通过单一模型完成感知到规划,减少模块间信息损失,但VLA模型因大量视觉token导致高计算延迟 [3][9] - 现有剪枝方法存在局限性:注意力机制法受限于简短文本指令,相似度法易误删关键前景token [4][14][11] - VLA模型通过自然语言增强车辆推理能力,DriveGPT4、OpenDriveVLA等方案已实现细粒度控制输出 [10] 方法论创新 - 基于人类驾驶行为定义前景(车辆、道路、交通标志等)与背景(建筑物、天空等),聚焦关键信息区域 [12] - ReconPruner仅含0.07B参数,通过MAE风格像素重建任务训练,量化token显著性 [17][19] - 对抗式策略强制低分token重建背景,避免"所有token高分"的退化解,提升区分精度 [20][34] 实验与性能 - 在nuScenes数据集测试,输入分辨率1596×1596(3249个token),评估25%/50%/75%剪枝比例 [28][30] - 50%剪枝下:L2误差32.10cm(相对基线99.1%),碰撞率0.25%(97.3%),交叉口率2.94%(95.1%) [30][35] - 对比基线方法:FastDriveVLA在L2误差、碰撞率等关键指标均优于注意力法(FastV)和相似度法(DivPrune) [30][46] 效率提升 - 75%剪枝时:FLOPs降低7.5倍,Prefill延迟减少3.7倍,Decode延迟减少1.3倍 [37][40] - 轻量化设计使CUDA延迟低于部分无参数方法,提升实时部署可行性 [36][37] 数据与可视化 - nuScenes-FG数据集通过GroundedSAM标注,解决原始3D边界框粗糙问题,提供精细前景分割 [15][33] - 可视化显示FastDriveVLA完整保留车道和车辆token,优于基线方法对关键区域的遗漏 [38][46] 行业意义 - 为VLA模型高效推理提供新范式,推动端到端自动驾驶在车载芯片的实际部署 [43][36] - 重建式剪枝策略可扩展至其他具身智能领域,为任务特定型token压缩提供参考 [11][43]
自动驾驶论文速递 | 扩散模型、轨迹预测、TopoLiDM、VLA等~
自动驾驶之心· 2025-08-05 03:09
基于可控扩散模型的生成式主动学习框架GALTraj - 提出GALTraj框架首次将可控扩散模型应用于轨迹预测的长尾问题通过尾样本感知生成技术动态增强稀有场景数据 [1] - 在WOMD和Argoverse2数据集上使长尾指标FPR₅相对降低47.6%(从0.42→0.22)整体预测误差minFDE₆降低14.7%(从0.654→0.558) [1] - 设计尾部感知生成方法对交通场景中的尾部代理、头部代理和相关代理分配差异化扩散引导生成兼具真实性、多样性且保留尾部特征的场景 [2] - 在多个骨干模型(QCNet、MTR)上验证显著提升尾部样本预测性能同时改善整体预测精度 [2] 拓扑感知激光雷达扩散模型TopoLiDM - 提出TopoLiDM框架通过拓扑正则化的图扩散模型实现高保真激光雷达生成 [13] - 在KITTI-360数据集上以22.6%的FRID下降率和9.2%的MMD下降率超越现有最优方法同时保持1.68样本/秒的实时生成速度 [13] - 采用紧凑的拓扑图作为潜在表示实现了快速、可解释且高保真的LiDAR点云生成 [15] - 拓扑感知VAE模块通过图构建和多层图卷积提取潜在图表示并引入0维持久同调约束确保生成的LiDAR场景符合真实世界环境的全局拓扑规则 [15] 高效端到端自动驾驶框架FastDriveVLA - 提出基于重建的视觉Token剪枝框架FastDriveVLA通过对抗性前景-背景重建策略在50%剪枝率下保持99.1%轨迹精度并降低碰撞率2.7% [21] - 设计ReconPruner通过MAE风格像素重建训练的即插即用修剪器增强识别有价值令牌的能力 [27] - 构建nuScenes-FG数据集包含241k图像-掩码对针对自动驾驶场景的前景分割标注 [27] - 在nuScenes开环规划基准上实现SOTA性能 [27] 语言大模型驱动自动驾驶框架PLA - 提出统一的感知-语言-动作(PLA)框架通过整合多传感器融合和GPT-4.1增强的视觉-语言-动作推理核心实现自适应自动驾驶 [34] - 在nuScenes数据集的城市交叉路口场景中速度预测的平均绝对误差(MAE)降至0.39 m/s、R²分数达0.923轨迹跟踪的平均位移误差(ADE)为1.013米 [34] - 多传感器语义融合模块整合激光雷达、雷达和相机数据生成结构化场景描述提升空间精度与语义丰富度 [38] - 通过LLM驱动的上下文推理增强对未见过场景的泛化能力实现鲁棒决策 [41] 自动驾驶行业资源整合 - 梳理近40+技术路线包括咨询行业应用、VLA benchmark、综述和学习入门路线 [50] - 整理国内高校著名自动驾驶团队和领域企业介绍 [52] - 汇总自动驾驶数据集与标定、仿真工具包括近百个数据集和标注工具 [52] - 提供基础入门资料涵盖数学基础、计算机视觉、深度学习和编程相关内容 [52]
面向量产VLA方案!FastDriveVLA:即插即用剪枝模块,推理加速近4倍(北大&小鹏)
自动驾驶之心· 2025-08-04 23:33
端到端自动驾驶技术演进 - 端到端自动驾驶方案在单一模型中完成从感知到规划的全过程,相比传统模块化方案减少了信息损失并简化了系统架构 [3] - 视觉-语言-动作(VLA)模型通过引入大语言模型的推理能力,在复杂场景理解和决策方面表现优于传统方法 [3] - 近期研究如SOLVE、OpenDriveVLA结合大模型技术,显著提升了系统性能和可解释性 [9] VLA模型的计算挑战与剪枝需求 - VLA模型将输入图像编码为大量视觉token(如3249个),导致高昂计算开销和推理延迟 [4] - 现有剪枝方法包括注意力机制导向法(如FastV、SparseVLM)和相似度导向法(如VisPruner、DivPrune),但存在监督信息不足或误删关键token的问题 [4][14] - 驾驶场景中文本指令固定且简短,难以提供有效剪枝指导 [4] FastDriveVLA创新框架 - 提出重建式视觉token剪枝框架,核心思想是模仿人类驾驶行为,仅保留与决策相关的前景区域token [5] - 开发即插即用剪枝器ReconPruner,参数量仅0.07B,通过MAE风格像素重建任务训练 [17][19] - 引入对抗式前景-背景重建策略,强制低分token重建背景以防止模型退化 [5][20] nuScenes-FG数据集构建 - 基于nuScenes数据集使用GroundedSAM进行精细前景分割,涵盖人、道路、车辆等关键要素 [12][15] - 包含24.1万张图像-mask对,覆盖六个车载摄像头视角 [6][15] - 明确定义前景与背景区域,背景如建筑物、天空等不影响驾驶决策 [12] 实验性能表现 - 在50%剪枝比例下(保留1624个token),L2误差为32.10cm(相对性能保持99.1%),碰撞率0.25%(保持97.3%) [30][32] - 在25%剪枝比例下(保留2436个token),L2误差31.80cm(超过基线0.1%),碰撞率0.26%(超过基线1.0%) [30] - 在75%剪枝比例下(保留812个token),仍保持最优性能,L2误差32.64cm(保持97.5%) [30] 效率提升效果 - FLOPs降低7.5倍,从38.2T减少至5.1T [37][40] - Prefill延迟减少3.7倍,从187ms/token降至51ms/token [37][40] - Decode延迟减少1.3倍,从23ms/token降至18ms/token [37][40] 方法优势验证 - 消融实验表明像素重建与对抗策略结合效果最佳,单独使用任一策略性能下降 [31][32] - 相比前景掩码剪枝方法(Gt-mask+Text-attn),在50%剪枝率下L2误差降低0.06cm,碰撞率降低0.01% [33][35] - 可视化结果显示能精确保留车道、车辆等关键token,避免背景干扰 [38][46] 行业应用价值 - 为VLA模型高效推理提供新范式,特别适用于具有明确前景区域的自动驾驶任务 [43] - 构建的nuScenes-FG数据集为后续研究提供通用基准 [13][43] - 轻量级设计(0.07B参数)和短训练时间(3小时/2卡H800)利于实际部署 [17][27]