期现对冲策略
搜索文档
市场呈现积极信号,但情绪修复基础尚不稳固
信达证券· 2025-12-21 09:03
量化模型与构建方式 1. 股指期货分红点位预测模型 * **模型名称**:股指期货合约存续期内分红预测模型[9] * **模型构建思路**:基于信达金工衍生品研究报告系列二《股指期货分红点位预测》中的方法,对股指期货标的指数未来一年及具体合约存续期内的分红点位进行预测[9]。 * **模型具体构建过程**:报告未详细描述该模型的构建过程,但指出其方法基于系列研究报告。模型最终输出对中证500、沪深300、上证50、中证1000指数未来一年分红点位的预测值,以及对各期货合约(次月、当季、下季)存续期内分红点位的预测值[9][10][11][12][13][14][15][16][17][18]。 2. 基差修正模型 * **模型/因子名称**:分红调整后的年化基差[19][20] * **模型/因子构建思路**:由于指数成分股分红会提前反映在期货价格中并拉低基差,为准确分析合约基差,需要剔除分红影响,计算经预期分红调整后的年化基差[19]。 * **模型具体构建过程**: 1. 计算预期分红调整后的基差: $$预期分红调整后的基差 = 实际基差 + 存续期内未实现的预期分红$$[20] 2. 将调整后的基差进行年化处理: $$年化基差 = \frac{(实际基差 + (预期)分红点位)}{指数价格} \times \frac{360}{合约剩余天数}$$[20] 报告中后续提及的基差均为按此公式计算的分红调整后的年化基差[20]。 3. 期现对冲策略模型 * **模型名称**:期现对冲策略(包括连续对冲策略与最低贴水策略)[44][45][46] * **模型构建思路**:策略原理基于信达金工衍生品研究报告系列三《股指期货基差收敛研究与对冲优化策略》中的基差收敛因素分析与优化策略[44]。通过做空股指期货对冲持有现货指数的风险,并利用不同的合约选择和调仓规则来优化对冲效果。 * **模型具体构建过程**: * **通用参数设置**: * **回测区间**:2022年7月22日至2025年12月19日[45][46]。 * **现货端**:持有对应标的指数(中证500、沪深300、上证50、中证1000)的全收益指数[45][46]。 * **期货端**:使用与现货端等额名义本金的股指期货合约进行做空对冲[45][46]。 * **资金分配**:现货端使用70%资金,期货端占用剩余30%资金[45][46]。 * **调仓再平衡**:每次调仓后根据产品净值重新计算现货及期货端数量[45][46]。 * **备注**:不考虑手续费、冲击成本及合约不可无限细分性质[45][46]。 * **策略一:连续对冲策略**[45] * **调仓规则**:连续持有季月或当月合约,直至该合约离到期剩余不足2日,在当日以收盘价平仓,并同时以收盘价卖空下一季月或当月合约[45]。 * **策略二:最低贴水策略**[46] * **调仓规则**:调仓时,计算当日所有可交易期货合约的年化基差,选择年化基差贴水幅度最小的合约开仓[46]。同一合约持有8个交易日后或该合约离到期剩余不足2日时,才可进行新合约选择(排除剩余到期日不足8日的合约)[46]。每次选择后,无论结果是否更换合约,都继续持有8个交易日[46]。 4. 信达期权系列指数模型 * **模型名称**:信达波动率指数 (Cinda-VIX) 与信达偏度指数 (Cinda-SKEW)[62][63][69] * **模型构建思路**:借鉴海外经验并结合中国场内期权市场实际情况,编制能够准确反映市场波动性预期和尾部风险预期的指数,以挖掘期权市场中隐含的市场情绪[62][63]。 * **模型具体构建过程**:报告未给出具体的计算公式,但指出具体算法基于信达金工衍生品研究报告系列四《挖掘期权市场中隐含的市场情绪》[63]。 * **Cinda-VIX**:反映期权市场投资者对标的资产未来波动率的预期,并具有期限结构,可反映不同期限内的波动预期[63]。 * **Cinda-SKEW**:通过捕捉不同行权价格期权隐含波动率(IV)的偏斜特征,来衡量市场对标的资产未来收益分布(尤其是尾部风险)的预期[69]。当SKEW指数超过100时,通常意味着投资者对市场未来可能出现大幅下跌风险的担忧加剧[70]。 模型的回测效果 (注:以下回测结果均基于**2022年7月22日至2025年12月19日**的回测区间[45][46]) 1. 中证500 (IC) 对冲策略表现[47][48] | 指标 | 当月连续对冲 | 季月连续对冲 | 最低贴水策略 | 指数表现 | | :--- | :--- | :--- | :--- | :--- | | 年化收益 | -3.42% | -2.58% | -1.93% | 3.93% | | 波动率 | 3.79% | 4.69% | 4.49% | 20.95% | | 最大回撤 | -11.27% | -8.74% | -8.75% | -31.46% | | 净值 | 0.8886 | 0.9149 | 0.9361 | 1.1399 | | 年换手次数 | 12 | 4 | 16.78 | —— | | 2025年以来收益 | -6.60% | -3.91% | -4.27% | 29.28% | 2. 沪深300 (IF) 对冲策略表现[49][53] | 指标 | 当月连续对冲 | 季月连续对冲 | 最低贴水策略 | 指数表现 | | :--- | :--- | :--- | :--- | :--- | | 年化收益 | 0.33% | 0.69% | 1.09% | 2.23% | | 波动率 | 2.89% | 3.23% | 3.00% | 16.98% | | 最大回撤 | -3.95% | -4.03% | -4.06% | -25.59% | | 净值 | 1.0112 | 1.0236 | 1.0376 | 1.0778 | | 年换手次数 | 12 | 4 | 15.01 | —— | | 2025年以来收益 | -1.21% | 0.37% | 0.40% | 19.57% | 3. 上证50 (IH) 对冲策略表现[54][57] | 指标 | 当月连续对冲 | 季月连续对冲 | 最低贴水策略 | 指数表现 | | :--- | :--- | :--- | :--- | :--- | | 年化收益 | 1.02% | 1.95% | 1.58% | 1.58% | | 波动率 | 2.96% | 3.36% | 2.97% | 15.96% | | 最大回撤 | -4.22% | -3.75% | -3.91% | -22.96% | | 净值 | 1.0350 | 1.0679 | 1.0548 | 1.0547 | | 年换手次数 | 12 | 4 | 15.60 | —— | | 2025年以来收益 | 0.42% | 1.85% | 1.36% | 15.09% | 4. 中证1000 (IM) 对冲策略表现[58][61] | 指标 | 当月连续对冲 | 季月连续对冲 | 最低贴水策略 | 指数表现 | | :--- | :--- | :--- | :--- | :--- | | 年化收益 | -6.48% | -4.82% | -4.42% | 0.67% | | 波动率 | 4.73% | 5.75% | 5.50% | 25.40% | | 最大回撤 | -14.00% | -12.63% | -11.11% | -41.60% | | 净值 | 0.8319 | 0.8498 | 0.8693 | 0.9799 | | 年换手次数 | 12 | 4 | 15.73 | —— | | 2025年以来收益 | -12.98% | -7.87% | -8.19% | 26.44% | 量化因子与构建方式 (本报告未涉及独立的量化因子构建,主要围绕模型展开) 因子的回测效果 (本报告未涉及独立的量化因子回测)
情绪的双重信号:短期平静与尾部谨慎
信达证券· 2025-12-13 11:06
量化模型与构建方式 1. 股指期货分红点位预测模型 1. **模型名称**:股指期货分红点位预测模型[9] 2. **模型构建思路**:基于信达金工衍生品研究报告系列二《股指期货分红点位预测》中的方法,对股指期货标的指数未来一年及合约存续期内的分红点位进行预测[9]。 3. **模型具体构建过程**:报告未详细描述该模型的构建过程,仅提及了预测结果。构建过程应参考其系列报告,核心是预测指数成分股在特定期间内的现金分红,并汇总为对指数点位的调整值[9]。 2. 基差修正模型 1. **模型名称**:分红调整年化基差计算模型[19] 2. **模型构建思路**:为剔除指数成分股分红对股指期货合约基差的影响,获得更纯粹反映市场情绪和供需关系的基差水平,对原始基差进行分红调整和年化处理[19]。 3. **模型具体构建过程**: * **步骤1**:计算实际基差。基差定义为期货合约收盘价与标的指数收盘价的差值[19]。 * **步骤2**:计算预期分红调整后的基差。公式为: $$预期分红调整后的基差 = 实际基差 + 存续期内未实现的预期分红$$[19] 其中,“存续期内未实现的预期分红”即使用前述分红点位预测模型得到的数值[9]。 * **步骤3**:将调整后的基差进行年化处理,以便于不同期限合约间的比较。公式为: $$年化基差 = \frac{实际基差 + (预期)分红点位}{指数价格} \times \frac{360}{合约剩余天数}$$[19] 报告中后续提及的“基差”均指此分红调整后的年化基差[19]。 3. 期现对冲策略模型 1. **模型名称**:连续对冲策略[44] 2. **模型构建思路**:通过持续做空股指期货合约,对冲持有现货指数(全收益指数)的市场风险,旨在获取相对稳定的收益或降低组合波动[43][44]。 3. **模型具体构建过程**: * **回测区间**:2022年7月22日至2025年12月12日[44]。 * **现货端**:持有对应标的指数的全收益指数[44]。 * **期货端**:做空与现货端等名义本金的中证500、沪深300、上证50或中证1000股指期货合约[44]。 * **资金分配**:现货端使用70%资金,期货端占用剩余30%资金。每次调仓后根据产品净值重新计算现货及期货头寸数量[44]。 * **调仓规则**:连续持有季月或当月合约,直至该合约离到期剩余不足2日,在当日以收盘价进行平仓,并同时以当日收盘价继续卖空下一季月或当月合约[44]。 * **备注**:不考虑交易手续费、冲击成本及合约不可无限细分性质[44]。 4. 期现对冲策略模型(衍生) 1. **模型名称**:最低贴水策略[45] 2. **模型构建思路**:在连续对冲策略的基础上进行优化,通过动态选择年化基差贴水幅度最小的合约进行对冲,旨在降低对冲成本或获取更高的基差收敛收益[45]。 3. **模型具体构建过程**: * **回测区间**:2022年7月22日至2025年12月12日[45]。 * **现货端与期货端设置**:与连续对冲策略相同[45]。 * **调仓规则**: * 调仓时,计算当日所有可交易期货合约的年化基差[45]。 * 选择年化基差贴水幅度最小的合约进行开仓[45]。 * 同一合约至少持有8个交易日,或该合约离到期剩余不足2日时,才可重新选择新合约(排除剩余到期日不足8日的合约)[45]。 * 每次选择后,即使结果仍是持有原合约,也继续持有8个交易日[45]。 * **备注**:不考虑交易手续费、冲击成本及合约不可无限细分性质[45]。 5. 信达波动率指数 (Cinda-VIX) 1. **因子名称**:信达波动率指数 (Cinda-VIX)[61] 2. **因子构建思路**:借鉴海外VIX指数编制经验,结合中国场内期权市场实际情况进行调整,编制能够反映市场对标的资产未来波动率预期的指数[61]。 3. **因子具体构建过程**:报告未给出具体计算公式,但指出其具体算法基于信达金工衍生品研究报告系列四《挖掘期权市场中隐含的市场情绪》[61]。该因子具有期限结构,可以反映投资者对同一标的资产在不同期限内的波动预期[61]。 6. 信达波动率偏度指数 (Cinda-SKEW) 1. **因子名称**:信达波动率偏度指数 (Cinda-SKEW)[67] 2. **因子构建思路**:通过捕捉不同行权价格期权隐含波动率(IV)的偏斜特征,来衡量市场对标的资产未来收益分布(特别是尾部风险)的预期[67]。该指数又被称为“黑天鹅指数”[68]。 3. **因子具体构建过程**:报告未给出具体计算公式。其原理是,当市场对下跌的担忧加剧时,看跌期权需求增加,会导致波动率曲线出现偏斜,SKEW指数值升高(通常超过100)[67][68]。 模型的回测效果 (回测区间:2022年7月22日至2025年12月12日[44][45]) 1. **IC当月连续对冲模型**,年化收益-3.41%,波动率3.80%,最大回撤-11.20%,净值0.8893,年换手次数12,2025年以来收益-6.53%[47] 2. **IC季月连续对冲模型**,年化收益-2.42%,波动率4.70%,最大回撤-8.34%,净值0.9205,年换手次数4,2025年以来收益-3.35%[47] 3. **IC最低贴水策略模型**,年化收益-1.94%,波动率4.51%,最大回撤-8.70%,净值0.9360,年换手次数16.58,2025年以来收益-4.28%[47] 4. **IF当月连续对冲模型**,年化收益0.36%,波动率2.89%,最大回撤-3.95%,净值1.0121,年换手次数12,2025年以来收益-1.12%[52] 5. **IF季月连续对冲模型**,年化收益0.70%,波动率3.24%,最大回撤-4.03%,净值1.0240,年换手次数4,2025年以来收益0.42%[52] 6. **IF最低贴水策略模型**,年化收益1.08%,波动率3.01%,最大回撤-4.06%,净值1.0370,年换手次数15.10,2025年以来收益0.34%[52] 7. **IH当月连续对冲模型**,年化收益1.08%,波动率2.97%,最大回撤-4.22%,净值1.0369,年换手次数12,2025年以来收益0.60%[56] 8. **IH季月连续对冲模型**,年化收益2.02%,波动率3.36%,最大回撤-3.75%,净值1.0699,年换手次数4,2025年以来收益2.05%[56] 9. **IH最低贴水策略模型**,年化收益1.68%,波动率2.98%,最大回撤-3.91%,净值1.0578,年换手次数15.69,2025年以来收益1.66%[56] 10. **IM当月连续对冲模型**,年化收益-6.43%,波动率4.74%,最大回撤-14.00%,净值0.8316,年换手次数12,2025年以来收益-12.68%[58] 11. **IM季月连续对冲模型**,年化收益-4.70%,波动率5.76%,最大回撤-12.63%,净值0.8489,年换手次数4,2025年以来收益-7.26%[58] 12. **IM最低贴水策略模型**,年化收益-4.38%,波动率5.51%,最大回撤-11.11%,净值0.8684,年换手次数15.62,2025年以来收益-7.93%[58] 因子的回测效果 (截至2025年12月12日) 1. **上证50VIX (30日)**,取值15.93[61] 2. **沪深300VIX (30日)**,取值17.03[61] 3. **中证500VIX (30日)**,取值22.82[61] 4. **中证1000VIX (30日)**,取值20.49[61] 5. **上证50SKEW**,取值101.80[68] 6. **沪深300SKEW**,取值108.04[68] 7. **中证500SKEW**,取值104.65[68] 8. **中证1000SKEW**,取值108.10[68]
调整中见韧性:VIX理性上行叠加期指资金积极布
信达证券· 2025-11-22 11:27
报告行业投资评级 未提及相关内容 报告的核心观点 - 本周指数走弱但衍生品市场情绪反应克制 VIX 提升但未极端上行 沪深 300 与中证 500 分别处 70.8%与 82.6%的年内分位水平 SKEW 延续上涨但多数品种低于极端阈值 显示投资者对尾部风险担忧相对理性 期指市场周度增仓超 7 万张且中小盘基差显著改善 IM 基差收窄近 100 点 表明资金借市场调整进行结构性布局 整体呈现指数承压但预期不极端的市场特征 [2] 根据相关目录分别进行总结 一、股指期货合约存续期内分红预估与基差修正 - 2025 年 11 月 21 日 预估中证 500、沪深 300、上证 50、中证 1000 指数未来一年分红点位分别为 80.73、80.42、63.63、63.40 各指数在不同合约存续期内分红点位有不同预估 如中证 500 指数在下季合约 IC2606 存续期内分红点位预估为 48.04 占比 0.70% [9] - 分析合约基差时需剔除分红影响 报告中基差均为分红调整后的年化基差 本周 IC、IM 当季合约分红调整年化基差上行 IF、IH 当季合约分红调整年化基差下行 各合约成交持仓水平大多相对前一周提升 [19][20][38] 二、期现对冲策略回测跟踪 - 介绍连续对冲和最低贴水两种策略回测参数和设置 回测区间均为 2022 年 7 月 22 日至 2025 年 11 月 21 日 现货端均持有对应标的指数全收益指数 期货端资金分配和调仓规则有不同设置 [46][47] - IC 对冲策略本周回撤 最低贴水策略选 IC2512 合约 IF、IH 对冲策略本周表现稳定 最低贴水策略分别选 IF2512、IH2512 合约 IM 对冲策略本周回撤 最低贴水策略选 IM2512 合约 [49][54][58][60] 三、信达期权系列指数 - 期权市场隐含信息有较高分析价值 信达金工开发能反映我国市场波动性的 Cinda - VIX 与 Cinda - SKEW 等指数 [62][63] - 截至 2025 年 11 月 21 日 30 日上证 50VIX、沪深 300VIX、中证 500VIX、中证 1000VIX 分别为 19.95、21.49、32.21、26.91 [63] - SKEW 指标衡量波动率偏斜程度 可洞察市场对标的资产未来收益分布预期 截至 2025 年 11 月 21 日 上证 50SKEW、沪深 300SKEW、中证 500SKEW、中证 1000SKEW 分别为 104.78、104.75、104.79、106.83 [71][72]
金工点评报告:贴水收窄VIX下行,市场情绪温和转暖
信达证券· 2025-09-27 04:35
量化模型与构建方式 1. 模型名称:期现对冲策略(连续对冲策略)[47][48] 模型构建思路:通过持有标的指数全收益指数作为现货端,同时做空股指期货合约进行对冲,利用基差收敛特性获取收益[47][48] 模型具体构建过程:回测区间为2022年7月22日至2025年9月26日[48]。现货端持有对应标的指数的全收益指数,并使用70%资金[48]。期货端做空与现货端金额相同名义本金的股指期货合约,占用剩余30%资金,每次调仓后根据产品净值重新计算现货及期货端数量[48]。调仓规则为连续持有季月或当月合约,直至该合约离到期剩余不足2日,在当日以收盘价进行平仓,并同时以当日收盘价继续卖空下一季月或当月合约[48]。不考虑交易过程中的手续费、冲击成本以及期货合约的不可无限细分性质[48] 2. 模型名称:期现对冲策略(最低贴水策略)[47][49] 模型构建思路:通过选择年化基差贴水幅度最小的合约进行开仓,以优化对冲成本[49] 模型具体构建过程:回测区间为2022年7月22日至2025年9月26日[49]。现货端持有对应标的指数的全收益指数,并使用70%资金[49]。期货端做空与现货端金额相同名义本金的股指期货合约,占用剩余30%资金,每次调仓后根据产品净值重新计算现货及期货端数量[49]。调仓规则为调仓时,对当日所有可交易期货合约的年化基差进行计算,选择年化基差贴水幅度最小的合约进行开仓[49]。同一合约持有8个交易日之后或该合约离到期剩余不足2日,才能进行选择新合约(排除剩余到期日不足8日的期货合约),每次选择后,即使选择结果为持有原合约不变,仍继续持有8个交易日[49]。不考虑交易过程中的手续费、冲击成本以及期货合约的不可无限细分性质[49] 3. 因子名称:分红调整年化基差[22] 因子构建思路:在分析合约基差时,需要剔除指数成分股分红的影响,以更真实地反映市场情绪和期货合约的定价[22] 因子具体构建过程:首先计算预期分红调整后的基差,公式为 预期分红调整后的基差 = 实际基差 + 存续期内未实现的预期分红 [22]。然后将基差进行年化处理,公式为 年化基差 = (实际基差 + (预期)分红点位)/指数价格 × 360/合约剩余天数 [22] 4. 因子名称:Cinda-VIX[65] 因子构建思路:借鉴海外经验,并结合我国场内期权市场的实际情况,开发能够准确反映我国市场波动性的VIX指数,以反应期权市场投资者对标的资产未来波动的预期[65] 因子具体构建过程:基于信达金工衍生品研究报告系列四《挖掘期权市场中隐含的市场情绪》中的算法[65]。VIX具有期限结构,可以反应投资者对同一个标的资产在未来不同期限内的波动预期[65] 5. 因子名称:Cinda-SKEW[71] 因子构建思路:通过捕捉不同行权价格期权隐含波动率(IV)的偏斜特征,以衡量市场对标的资产未来收益分布的预期,洞察市场对尾部风险的忧虑[71] 因子具体构建过程:SKEW指标捕捉了不同行权价格期权隐含波动率(IV)的偏斜特征[71]。当市场对下跌的担忧超过对上涨的预期时,波动率偏斜呈现负值;反之则为正值[71]。SKEW指数超过100,通常意味着投资者对市场未来可能出现的大幅下跌风险的担忧加剧[72] 模型的回测效果 1. IC当月连续对冲模型,年化收益-3.04%,波动率3.88%,最大回撤-9.47%,净值0.9066,年换手次数12,2025年以来收益-4.80%[51] 2. IC季月连续对冲模型,年化收益-2.11%,波动率4.79%,最大回撤-8.34%,净值0.9346,年换手次数4,2025年以来收益-1.94%[51] 3. IC最低贴水策略模型,年化收益-1.43%,波动率4.61%,最大回撤-7.97%,净值0.9553,年换手次数17.00,2025年以来收益-2.35%[51] 4. IF当月连续对冲模型,年化收益0.47%,波动率2.96%,最大回撤-3.95%,净值1.0149,年换手次数12,2025年以来收益-0.84%[56] 5. IF季月连续对冲模型,年化收益0.66%,波动率3.32%,最大回撤-4.03%,净值1.0211,年换手次数4,2025年以来收益0.12%[56] 6. IF最低贴水策略模型,年化收益1.24%,波动率3.09%,最大回撤-4.06%,净值1.0399,年换手次数15.11,2025年以来收益0.62%[56] 7. IH当月连续对冲模型,年化收益1.04%,波动率3.05%,最大回撤-4.22%,净值1.0334,年换手次数12,2025年以来收益0.26%[60] 8. IH季月连续对冲模型,年化收益1.93%,波动率3.45%,最大回撤-3.75%,净值1.0627,年换手次数4,2025年以来收益1.33%[60] 9. IH最低贴水策略模型,年化收益1.68%,波动率3.06%,最大回撤-3.91%,净值1.0542,年换手次数15.74,2025年以来收益1.30%[60] 10. IM当月连续对冲模型,年化收益-6.18%,波动率4.77%,最大回撤-14.00%,净值0.8340,年换手次数12,2025年以来收益-10.69%[62] 11. IM季月连续对冲模型,年化收益-4.51%,波动率5.80%,最大回撤-12.63%,净值0.8580,年换手次数4,2025年以来收益-5.63%[62] 12. IM最低贴水策略模型,年化收益-4.07%,波动率5.56%,最大回撤-11.11%,净值0.8704,年换手次数15.81,2025年以来收益-5.76%[62] 因子的回测效果 1. Cinda-VIX因子,截至2025年9月26日,30日上证50VIX取值19.19,沪深300VIX取值19.09,中证500VIX取值28.46,中证1000VIX取值26.08[65] 2. Cinda-SKEW因子,截至2025年9月26日,上证50SKEW取值100.47,沪深300SKEW取值104.24,中证500SKEW取值102.07,中证1000SKEW取值103.14[72]
贴水持续收敛,市场情绪延续乐观
信达证券· 2025-08-23 14:38
量化模型与构建方式 1. 股指期货分红点位预测模型 **模型构建思路**:基于历史数据对股指期货合约存续期内标的指数成分股的分红进行预测,以修正基差计算[9] **模型具体构建过程**: 1. 对标的指数(中证500、沪深300、上证50、中证1000)成分股未来一年的分红进行预测 2. 计算各期货合约(当月、次月、当季、下季)存续期内的预期分红点位 3. 具体预测值(2025年8月22日): - 中证500:未来一年分红点位87.44,各合约存续期内分红点位均为0.05[9][11] - 沪深300:未来一年分红点位83.62,各合约存续期内分红点位均为2.45[12][15] - 上证50:未来一年分红点位66.77,各合约存续期内分红点位均为0.85[17][18] - 中证1000:未来一年分红点位66.50,各合约存续期内分红点位均为0.39[19][20] 2. 基差修正模型 **模型构建思路**:剔除分红影响,计算真实反映市场情绪的基差水平[21] **模型具体构建过程**: 1. 计算实际基差:合约收盘价 - 标的指数收盘价 2. 计算预期分红调整后的基差: $$预期分红调整后基差 = 实际基差 + 存续期内未实现的预期分红$$ 3. 年化处理: $$年化基差 = \frac{实际基差 + 预期分红点位}{指数价格} \times \frac{360}{合约剩余天数}$$[21] 3. 期现对冲策略模型 **模型构建思路**:通过持有现货并做空期货合约实现对冲,考虑基差收敛特性进行优化[44][46] **模型具体构建过程**: 包含两种策略: 3.1 连续对冲策略 1. **现货端**:持有标的指数的全收益指数,使用70%资金 2. **期货端**:做空相同名义本金的股指期货合约,使用30%资金 3. **调仓规则**:连续持有季月/当月合约,直至离到期剩余不足2日,以收盘价平仓并开仓下一合约[45] 3.2 最低贴水策略 1. **现货端**:持有标的指数的全收益指数,使用70%资金 2. **期货端**:做空相同名义本金的股指期货合约,使用30%资金 3. **调仓规则**: - 计算所有可交易合约的年化基差 - 选择年化基差贴水幅度最小的合约开仓 - 同一合约持有8个交易日或离到期不足2日时调仓 - 排除剩余到期日不足8日的合约[46] 4. 信达波动率指数(Cinda-VIX) **因子构建思路**:反映期权市场投资者对标的资产未来波动率的预期,借鉴海外经验并结合中国场内期权市场实际情况[62] **因子具体构建过程**:基于信达金工衍生品研究报告系列四《挖掘期权市场中隐含的市场情绪》中的算法编制[62] 5. 信达偏度指数(Cinda-SKEW) **因子构建思路**:捕捉不同行权价格期权隐含波动率的偏斜特征,衡量市场对尾部风险的预期[67] **因子具体构建过程**:通过分析虚值看涨期权与看跌期权的隐含波动率偏斜程度编制[67] 模型的回测效果 1. 中证500股指期货期现对冲策略(2022年7月22日至2025年8月22日) | 策略类型 | 年化收益 | 波动率 | 最大回撤 | 净值 | 年换手次数 | 2025年以来收益 | |---------|---------|--------|----------|------|------------|---------------| | 当月连续对冲 | -3.07% | 3.82% | -9.27% | 0.9086 | 12 | -4.60% | | 季月连续对冲 | -2.31% | 4.71% | -8.34% | 0.9307 | 4 | -2.33% | | 最低贴水策略 | -1.40% | 4.60% | -7.97% | 0.9577 | 17.24 | -2.11% | | 指数表现 | 2.68% | 20.96% | -31.46% | 1.0848 | —— | 23.03% |[48] 2. 沪深300股指期货期现对冲策略(2022年7月22日至2025年8月22日) | 策略类型 | 年化收益 | 波动率 | 最大回撤 | 净值 | 年换手次数 | 2025年以来收益 | |---------|---------|--------|----------|------|------------|---------------| | 当月连续对冲 | 0.38% | 2.97% | -3.95% | 1.0116 | 12 | -1.18% | | 季月连续对冲 | 0.52% | 3.32% | -4.03% | 1.0160 | 4 | -0.38% | | 最低贴水策略 | 1.18% | 3.10% | -4.06% | 1.0366 | 15.29 | 0.30% | | 指数表现 | 1.06% | 17.05% | -25.59% | 1.0330 | —— | 14.60% |[53] 3. 上证50股指期货期现对冲策略(2022年7月22日至2025年8月22日) | 策略类型 | 年化收益 | 波动率 | 最大回撤 | 净值 | 年换手次数 | 2025年以来收益 | |---------|---------|--------|----------|------|------------|---------------| | 当月连续对冲 | 0.97% | 3.08% | -4.22% | 1.0302 | 12 | -0.06% | | 季月连续对冲 | 1.87% | 3.49% | -3.76% | 1.0585 | 4 | 0.91% | | 最低贴水策略 | 1.63% | 3.09% | -3.91% | 1.0511 | 15.94 | 0.99% | | 指数表现 | 0.91% | 16.27% | -22.96% | 1.0281 | —— | 12.19% |[57] 4. 中证1000股指期货期现对冲策略(2022年7月22日至2025年8月22日) | 策略类型 | 年化收益 | 波动率 | 最大回撤 | 净值 | 年换手次数 | 2025年以来收益 | |---------|---------|--------|----------|------|------------|---------------| | 当月连续对冲 | -6.21% | 4.72% | -14.01% | 0.8345 | 12 | -10.38% | | 季月连续对冲 | -4.69% | 5.76% | -12.63% | 0.8580 | 4 | -6.09% | | 最低贴水策略 | -4.04% | 5.55% | -11.11% | 0.8702 | 15.91 | -5.26% | | 指数表现 | 0.78% | 25.69% | -41.60% | 0.9387 | —— | 27.01% |[59] 因子的回测效果 1. 信达波动率指数(Cinda-VIX)取值(2025年8月22日) - 上证50VIX_30: 24.31[62][63] - 沪深300VIX_30: 22.97[62][63] - 中证500VIX_30: 32.58[62][63] - 中证1000VIX_30: 29.50[62][63] 2. 信达偏度指数(Cinda-SKEW)取值(2025年8月22日) - 上证50SKEW: 99.82[68][71] - 沪深300SKEW: 104.77[68][71] - 中证500SKEW: 98.22[68][71] - 中证1000SKEW: 106.46[68][71]
贴水大幅收敛,市场情绪全面升温
信达证券· 2025-08-16 13:35
根据提供的研报内容,以下是关于量化模型和因子的总结: 量化模型与构建方式 1. 股指期货分红点位预测模型 - **模型名称**:股指期货分红点位预测模型[8] - **模型构建思路**:基于历史数据对股指期货合约存续期内标的指数成分股的分红进行预测,以调整基差计算[8] - **模型具体构建过程**:该模型基于信达金工衍生品研究报告系列二《股指期货分红点位预测》中的方法,对中证500、沪深300、上证50、中证1000指数未来一年内分红点位进行预测[8] 2. 基差修正模型 - **模型名称**:基差修正模型[21] - **模型构建思路**:剔除分红影响,计算更准确的期货合约基差[21] - **模型具体构建过程**:首先计算实际基差(合约收盘价与标的指数收盘价的差值),然后加上存续期内未实现的预期分红,最后进行年化处理[22] - **计算公式**: $$预期分红调整后的基差 = 实际基差 + 存续期内未实现的预期分红$$[22] $$年化基差 = \frac{(实际基差 + (预期)分红点位)}{指数价格} \times \frac{360}{合约剩余天数}$$[22] 3. 期现对冲策略模型 - **模型名称**:期现对冲策略模型[44] - **模型构建思路**:利用股指期货进行市场风险对冲,获取稳定的超额收益[44] - **模型具体构建过程**:分为连续对冲策略和最低贴水策略两种[45][46] - **连续对冲策略**:现货端持有对应标的指数的全收益指数,期货端做空对冲,使用70%资金配置现货,30%资金用于期货保证金。调仓规则为连续持有季月/当月合约,直至该合约离到期剩余不足2日,在当日以收盘价进行平仓,并同时以当日收盘价继续卖空下一季月/当月合约[45] - **最低贴水策略**:调仓时对当日所有可交易期货合约的年化基差进行计算,选择年化基差贴水幅度最小的合约进行开仓。同一合约持有8个交易日之后或该合约离到期剩余不足2日才能进行选择新合约[46] 4. 信达波动率指数模型 - **模型名称**:Cinda-VIX模型[62] - **模型构建思路**:反映期权市场投资者对标的资产未来波动的预期[62] - **模型具体构建过程**:借鉴海外经验,结合我国场内期权市场的实际情况,对指数编制方案进行调整,开发能够准确反映我国市场波动性的VIX指数[62] 5. 信达波动率偏斜指数模型 - **模型名称**:Cinda-SKEW模型[69] - **模型构建思路**:捕捉不同行权价格期权隐含波动率的偏斜特征,衡量市场对标的资产未来收益分布的预期[69] - **模型具体构建过程**:通过分析SKEW指数的数值及其变化趋势,洞察市场对标的资产未来潜在风险的忧虑。当SKEW指数超过100,意味着投资者对市场未来可能出现的大幅下跌风险的担忧加剧[70] 模型的回测效果 1. 中证500股指期货期现对冲策略[48] - 当月连续对冲:年化收益-3.00%,波动率3.82%,最大回撤-9.01%,净值0.9112,年换手次数12,2025年以来收益-4.34% - 季月连续对冲:年化收益-2.17%,波动率4.71%,最大回撤-8.34%,净值0.9351,年换手次数4,2025年以来收益-1.89% - 最低贴水策略:年化收益-1.32%,波动率4.60%,最大回撤-7.97%,净值0.9603,年换手次数17.36,2025年以来收益-1.85% - 指数表现:年化收益1.43%,波动率20.97%,最大回撤-31.46%,净值1.0444,2025年以来收益18.44% 2. 沪深300股指期货期现对冲策略[51] - 当月连续对冲:年化收益0.42%,波动率2.97%,最大回撤-3.95%,净值1.0128,年换手次数12,2025年以来收益-1.06% - 季月连续对冲:年化收益0.57%,波动率3.32%,最大回撤-4.03%,净值1.0174,年换手次数4,2025年以来收益-0.24% - 最低贴水策略:年化收益1.22%,波动率3.10%,最大回撤-4.06%,净值1.0378,年换手次数15.39,2025年以来收益0.41% - 指数表现:年化收益-0.28%,波动率17.04%,最大回撤-25.59%,净值0.9915,2025年以来收益10.00% 3. 上证50股指期货期现对冲策略[56] - 当月连续对冲:年化收益0.98%,波动率3.08%,最大回撤-4.22%,净值1.0301,年换手次数12,2025年以来收益-0.08% - 季月连续对冲:年化收益1.87%,波动率3.50%,最大回撤-3.76%,净值1.0583,年换手次数4,2025年以来收益0.89% - 最低贴水策略:年化收益1.64%,波动率3.10%,最大回撤-3.91%,净值1.0509,年换手次数16.05,2025年以来收益0.97% - 指数表现:年化收益-0.18%,波动率16.24%,最大回撤-22.96%,净值0.9945,2025年以来收益8.53% 4. 中证1000股指期货期现对冲策略[60] - 当月连续对冲:年化收益-6.19%,波动率4.71%,最大回撤-14.01%,净值0.8362,年换手次数12,2025年以来收益-10.21% - 季月连续对冲:年化收益-4.65%,波动率5.76%,最大回撤-12.63%,净值0.8654,年换手次数4,2025年以来收益-5.84% - 最低贴水策略:年化收益-4.02%,波动率5.56%,最大回撤-11.11%,净值0.8720,年换手次数15.97,2025年以来收益-5.09% - 指数表现:年化收益0.20%,波动率25.71%,最大回撤-41.60%,净值0.9335,2025年以来收益22.78% 5. 信达波动率指数[62] - 截至2025年8月15日,30日上证50VIX为24.25,沪深300VIX为24.25,中证500VIX为28.09,中证1000VIX为27.87 6. 信达波动率偏斜指数[70] - 截至2025年8月15日,上证50SKEW为100.82,沪深300SKEW为105.10,中证500SKEW为99.01,中证1000SKEW为109.56
IH重回全面贴水,尾部风险预期持续升高
信达证券· 2025-08-09 12:10
量化模型与构建方式 1. **模型名称:股指期货分红点位预测模型** - **模型构建思路**:基于历史数据和成分股分红信息,预测股指期货合约存续期内标的指数的分红点位[9] - **模型具体构建过程**: 1. 对中证500、沪深300、上证50、中证1000指数未来一年分红点位进行预测 2. 计算合约存续期内分红点位占比 3. 公式: $$年化基差 = \frac{实际基差 + 预期分红点位}{指数价格} \times \frac{360}{合约剩余天数}$$ 4. 示例:中证500指数在IC2508合约存续期内分红点位预估为2.12,年化基差计算中需叠加该调整项[9][21] 2. **模型名称:期现对冲策略(连续对冲/最低贴水策略)** - **模型构建思路**:通过动态调整期货合约持仓,优化基差收敛收益[44][46] - **模型具体构建过程**: - **连续对冲策略**: 1. 持有季月/当月合约至到期前2日平仓 2. 滚动卖空下一季月/当月合约 3. 现货端持有全收益指数,期货端占用30%资金[44] - **最低贴水策略**: 1. 每日计算所有可交易合约的年化基差 2. 选择贴水幅度最小的合约开仓 3. 持有8个交易日或到期前2日调仓[46] 3. **模型名称:信达波动率指数(Cinda-VIX/SKEW)** - **模型构建思路**:通过期权隐含波动率捕捉市场对波动和尾部风险的预期[61][67] - **模型具体构建过程**: - **Cinda-VIX**: 1. 基于不同期限期权价格计算隐含波动率 2. 反映未来30/60/90/120日的波动预期[61] - **Cinda-SKEW**: 1. 分析虚值看涨/看跌期权IV偏斜 2. 数值>100表明市场担忧尾部风险[67] --- 模型的回测效果 1. **IC对冲策略(2022/7/22-2025/8/8)** - 季月连续对冲:年化收益-1.87%,波动率4.72%,最大回撤-8.34%[48] - 最低贴水策略:年化收益-1.12%,年换手17.15次[48] 2. **IF对冲策略** - 最低贴水策略:年化收益1.36%,2025年以来收益0.80%[51] 3. **IH对冲策略** - 季月连续对冲:年化收益2.04%,净值1.0630[54] 4. **IM对冲策略** - 当月连续对冲:年化收益-6.07%,最大回撤-14.01%[59] --- 量化因子与构建方式 1. **因子名称:分红调整年化基差** - **因子构建思路**:剔除分红影响后的期货合约基差[21] - **因子具体构建过程**: 1. 计算实际基差:合约收盘价 - 指数收盘价 2. 叠加存续期内未实现预期分红 3. 年化处理: $$年化基差 = \frac{实际基差 + 预期分红点位}{指数价格} \times \frac{360}{合约剩余天数}$$[21] 2. **因子名称:VIX期限结构** - **因子构建思路**:反映不同期限波动率预期的斜率[61] - **因子具体构建过程**: 1. 分别计算30/60/90/120日VIX 2. 对比短期与长期VIX差值[61] 3. **因子名称:SKEW极端值** - **因子构建思路**:识别市场对黑天鹅事件的定价[67] - **因子具体构建过程**: 1. 当SKEW>100且处于历史99.7%分位时触发预警 2. 示例:中证1000SKEW达114.07点[68] --- 因子的回测效果 1. **分红调整年化基差(2025/8/8)** - IC当季合约:-10.79%(低于2022年以来中位数)[22] - IH当季合约:-0.12%(从升水转为贴水)[33] 2. **Cinda-VIX(30日)** - 中证500VIX:23.46(处于历史50%分位以下)[61] 3. **Cinda-SKEW** - 沪深300SKEW:109.58(历史99.7%分位)[68]
IH保持全面升水,大盘指数预期乐观
信达证券· 2025-07-26 07:16
量化模型与构建方式 1. **模型名称:股指期货分红点位预测模型** - **模型构建思路**:基于历史分红数据和指数成分股的分红预测,对股指期货合约存续期内的分红点位进行预测[9] - **模型具体构建过程**: 1. 对中证500、沪深300、上证50、中证1000指数未来一年内的分红点位进行预测,分别预估为81.80、74.62、59.13、61.02[9] 2. 对当月、次月、当季、下季合约存续期内的分红点位进行细分预测,例如中证500指数在当月合约IC2508存续期内分红点位预估为3.73,次月合约IC2509为7.31,当季合约IC2512为7.31,下季合约IC2603为7.31[9] 3. 计算分红占比,例如中证500指数在下季合约存续期内分红占比预估为0.12%[9] 2. **模型名称:基差修正模型** - **模型构建思路**:剔除分红对期货合约基差的影响,计算调整后的年化基差[20] - **模型具体构建过程**: 1. 预期分红调整后的基差 = 实际基差 + 存续期内未实现的预期分红[20] 2. 年化基差计算公式: $$年化基差 = (实际基差 + (预期)分红点位)/指数价格 \times 360/合约剩余天数$$[20] 3. 例如,IC当季合约分红调整年化基差周内低点贴水8.57%,当前基差贴水7.79%[21] 3. **模型名称:期现对冲策略** - **模型构建思路**:基于基差收敛因素分析,优化对冲策略[46] - **模型具体构建过程**: 1. **连续对冲策略**: - 回测区间:2022年7月22日至2025年7月25日[47] - 现货端:持有对应标的指数的全收益指数[47] - 期货端:现货端使用70%资金,做空对冲端使用金额相同名义本金的股指期货合约[47] - 调仓规则:连续持有季月/当月合约,直至该合约离到期剩余不足2日,平仓并卖空下一季月/当月合约[47] 2. **最低贴水策略**: - 调仓规则:选择年化基差贴水幅度最小的合约开仓,同一合约持有8个交易日或离到期不足2日[48] 模型的回测效果 1. **IC对冲策略**(2022年7月22日至2025年7月25日): - 当月连续对冲:年化收益-2.87%,波动率3.85%,最大回撤-8.65%,净值0.9167[50] - 季月连续对冲:年化收益-2.11%,波动率4.74%,最大回撤-8.34%,净值0.9383[50] - 最低贴水策略:年化收益-1.09%,波动率4.64%,最大回撤-7.97%,净值0.9677[50] 2. **IF对冲策略**(2022年7月22日至2025年7月25日): - 当月连续对冲:年化收益0.52%,波动率2.99%,最大回撤-3.95%,净值1.0155[55] - 季月连续对冲:年化收益0.69%,波动率3.34%,最大回撤-4.03%,净值1.0207[55] - 最低贴水策略:年化收益1.33%,波动率3.12%,最大回撤-4.06%,净值1.0403[55] 3. **IH对冲策略**(2022年7月22日至2025年7月25日): - 当月连续对冲:年化收益1.08%,波动率3.10%,最大回撤-4.22%,净值1.0326[59] - 季月连续对冲:年化收益2.00%,波动率3.52%,最大回撤-3.76%,净值1.0612[59] - 最低贴水策略:年化收益1.75%,波动率3.12%,最大回撤-3.91%,净值1.0533[59] 4. **IM对冲策略**(2022年7月22日至2025年7月25日): - 当月连续对冲:年化收益-6.09%,波动率4.73%,最大回撤-14.01%,净值0.8426[61] - 季月连续对冲:年化收益-4.50%,波动率5.78%,最大回撤-12.63%,净值0.8744[61] - 最低贴水策略:年化收益-3.89%,波动率5.58%,最大回撤-11.11%,净值0.8851[61] 量化因子与构建方式 1. **因子名称:Cinda-VIX** - **因子构建思路**:反映期权市场对标的资产未来波动的预期,具有期限结构[64] - **因子具体构建过程**:基于期权定价模型,计算不同期限的波动率指数[64] - **因子评价**:能够准确反映市场波动性预期[64] 2. **因子名称:Cinda-SKEW** - **因子构建思路**:捕捉不同行权价格期权隐含波动率的偏斜特征,衡量市场对尾部风险的预期[74] - **因子具体构建过程**:分析看涨和看跌期权的波动率偏斜,计算SKEW指数[74] - **因子评价**:能够洞察市场对极端负面事件的预期[74] 因子的回测效果 1. **Cinda-VIX**(截至2025年7月25日): - 上证50VIX_30:21.24[64] - 沪深300VIX_30:20.56[64] - 中证500VIX_30:28.18[64] - 中证1000VIX_30:25.00[64] 2. **Cinda-SKEW**(截至2025年7月25日): - 上证50SKEW:97.47[75] - 沪深300SKEW:98.01[75] - 中证500SKEW:100.61[75] - 中证1000SKEW:102.81[75]
IH恢复升水格局,警惕中证500尾部风险
信达证券· 2025-07-19 09:07
量化模型与构建方式 1. **模型名称:股指期货分红点位预测模型** - **模型构建思路**:基于历史数据和成分股分红信息,预测股指期货合约存续期内标的指数的分红点位[9][11][16][18] - **模型具体构建过程**: 1. 收集标的指数成分股的历史分红数据及公告信息 2. 按合约存续期划分未来一年内的分红实施时间段 3. 汇总各时间段内成分股的预期分红金额,折算为指数点位影响 公式: $$分红点位 = \sum_{i=1}^{n} (成分股i分红金额 \times 权重_i) / 指数除数$$ 其中权重_i为成分股在指数中的权重[9][11][16][18] 2. **模型名称:基差修正模型** - **模型构建思路**:剔除分红对期货合约基差的影响,计算真实反映市场情绪的调整后基差[21] - **模型具体构建过程**: 1. 计算实际基差:期货价格 - 指数价格 2. 叠加存续期内未实现的预期分红点位 3. 年化处理以统一比较标准 公式: $$年化基差 = \frac{实际基差 + 预期分红点位}{指数价格} \times \frac{360}{合约剩余天数}$$[21] 3. **模型名称:期现对冲策略(连续对冲/最低贴水)** - **模型构建思路**:通过动态调整期货合约对冲现货风险,利用基差收敛特性优化收益[47][49] - **模型具体构建过程**: - **连续对冲**:持有季月/当月合约至到期前2日平仓并切换下一合约[48] - **最低贴水策略**:每8个交易日选择年化基差贴水最小的合约开仓,排除剩余期限不足8日的合约[49] - 资金分配:70%配置现货全收益指数,30%用于期货保证金[48][49] 4. **模型名称:Cinda-VIX/SKEW指数模型** - **模型构建思路**:通过期权隐含波动率捕捉市场波动预期与尾部风险[66][71] - **模型具体构建过程**: 1. 计算不同行权价期权的隐含波动率(IV) 2. VIX反映波动率期限结构,SKEW衡量IV偏斜程度 3. 当SKEW>100时提示市场对极端下跌风险的担忧[71][72] --- 量化因子与构建方式 1. **因子名称:分红调整年化基差因子** - **因子构建思路**:反映期货合约相对现货的溢价/折价水平,剔除分红干扰[21] - **因子具体构建过程**: 1. 按基差修正模型计算年化基差 2. 跟踪IC/IF/IH/IM四大期指品种的季月合约基差[22][28][32][38][46] 2. **因子名称:VIX期限结构因子** - **因子构建思路**:通过不同期限VIX比值反映市场短期与长期波动预期差异[66] - **因子具体构建过程**: 1. 计算30/60/90/120日VIX值 2. 构建期限结构斜率(如VIX_30/VIX_120)[70][73][74][75] 3. **因子名称:SKEW警戒因子** - **因子构建思路**:识别市场对尾部风险的定价异常[71][72] - **因子具体构建过程**: 1. 监测SKEW指数是否持续高于历史80%分位 2. 结合VIX上升形成"风险高地"信号[72][78] --- 模型的回测效果 | 模型名称 | 年化收益 | 波动率 | 最大回撤 | 净值 | 年换手次数 | |------------------------|------------|--------|----------|----------|------------| | IC连续对冲(当月) | -2.86% | 3.86% | -8.40% | 0.9173 | 12 |[51]| | IC连续对冲(季月) | -2.06% | 4.75% | -8.34% | 0.9400 | 4 |[51]| | IC最低贴水策略 | -1.08% | 4.65% | -7.97% | 0.9683 | 17.5 |[51]| | IF连续对冲(当月) | 0.50% | 3.00% | -3.95% | 1.0149 | 12 |[56]| | IF连续对冲(季月) | 0.75% | 3.35% | -4.03% | 1.0225 | 4 |[56]| | IF最低贴水策略 | 1.32% | 3.13% | -4.06% | 1.0397 | 15.48 |[56]| | IH连续对冲(当月) | 1.04% | 3.11% | -4.22% | 1.0314 | 12 |[60]| | IH连续对冲(季月) | 1.99% | 3.53% | -3.76% | 1.0603 | 4 |[60]| | IH最低贴水策略 | 1.72% | 3.13% | -3.91% | 1.0521 | 16.15 |[60]| | IM连续对冲(当月) | -6.06% | 4.73% | -14.01% | 0.8411 | 12 |[64]| | IM连续对冲(季月) | -4.43% | 5.78% | -12.63% | 0.8718 | 4 |[64]| | IM最低贴水策略 | -3.85% | 5.58% | -11.11% | 0.8839 | 16.02 |[64]| --- 因子的回测效果 | 因子名称 | 当前值 | 历史分位 | |------------------------|---------------------|--------------------| | IC年化基差 | -8.25% | 低于2022年中位数 |[22]| | IF年化基差 | -0.64% | 低于2022年中位数 |[28]| | IH年化基差 | 1.46%(升水) | 低于2022年中位数 |[32]| | IM年化基差 | -11.48% | 低于2022年中位数 |[46]| | 中证500SKEW | 102.11 | 超80%分位警戒线 |[72][78]| | 30日VIX(中证500) | 27.44 | 短期快速上涨 |[66][72]|
期指日增仓7.6万手,衍生品市场释放回暖信号
信达证券· 2025-07-12 08:39
根据提供的研报内容,以下是量化模型与因子的详细总结: 量化模型与构建方式 1. **模型名称:股指期货分红点位预测模型** - **模型构建思路**:基于历史数据和成分股分红信息,预测股指期货合约存续期内标的指数的分红点位[9] - **模型具体构建过程**: 1. 对中证500、沪深300、上证50、中证1000指数未来一年分红点位进行预测 2. 计算各合约存续期内分红点位占比 3. 公式: $$年化基差 = \frac{(实际基差 + 预期分红点位)}{指数价格} \times \frac{360}{合约剩余天数}$$ 4. 2025年7月11日预测值:中证500(79.05)、沪深300(68.57)、上证50(50.38)、中证1000(58.71)[9][10][12][14][16][18] 2. **模型名称:期现对冲策略** - **模型构建思路**:通过期货端对冲现货风险,利用基差收敛特性优化收益[44][46] - **模型具体构建过程**: - **连续对冲策略**: 1. 现货端持有全收益指数(70%资金) 2. 期货端做空等额名义本金的股指期货合约(30%资金) 3. 调仓规则:季月/当月合约持有至到期前2日切换 - **最低贴水策略**: 1. 选择年化基差贴水幅度最小的合约开仓 2. 同一合约持有8个交易日或到期前2日切换[46] 3. **模型名称:信达波动率指数(Cinda-VIX)** - **模型构建思路**:反映期权市场对标的资产未来波动率的预期[61] - **模型评价**:能有效捕捉市场恐慌情绪,期限结构可反映不同时间维度的风险预期[61] 4. **模型名称:信达偏度指数(Cinda-SKEW)** - **模型构建思路**:通过期权隐含波动率偏斜特征衡量市场尾部风险[69] - **模型评价**:SKEW>100表明市场对下跌风险担忧加剧,与VIX结合可增强预警效果[70] 模型的回测效果 1. **IC对冲策略(2022/7/22-2025/7/11)** - 当月连续对冲:年化收益-2.83%,波动率3.87%,最大回撤-8.26% - 季月连续对冲:年化收益-2.06%,波动率4.77%,最大回撤-8.34% - 最低贴水策略:年化收益-1.06%,波动率4.67%,最大回撤-7.97%[48] 2. **IF对冲策略** - 最低贴水策略表现最优:年化收益1.31%,波动率3.14%,净值1.0392[51] 3. **IH对冲策略** - 季月连续对冲表现最优:年化收益1.97%,净值1.0593[54] 4. **IM对冲策略** - 最低贴水策略:年化收益-3.83%,但最大回撤(-11.11%)显著优于指数(-41.60%)[59] 量化因子与构建方式 1. **因子名称:年化基差因子** - **因子构建思路**:反映期货合约相对现货的溢价/折价水平[20] - **因子具体构建过程**: $$年化基差 = \frac{期货价格 - 指数价格 + 预期分红}{指数价格} \times \frac{360}{剩余天数}$$ - **因子评价**:小盘股指(IC/IM)基差贴水更显著,对对冲策略收益影响较大[21][39] 2. **因子名称:VIX期限结构因子** - **因子构建思路**:通过不同期限VIX差值反映市场短期/长期风险预期差异[61] - **因子取值**: - 上证50VIX(30日):19.77 - 中证500VIX(30日):25.01(显著高于其他指数)[61][63] 3. **因子名称:SKEW因子** - **因子构建思路**:虚值看跌期权隐含波动率溢价程度[69] - **因子取值**: - 中证500SKEW:102.27(突破80%历史分位警戒线)[70][75] 因子的回测效果 1. **年化基差因子** - IC当季合约:当前贴水7.95%,较前周上行[21] - IM当季合约:贴水10.46%,2022年以来中位数下方[39] 2. **VIX因子** - 中证500VIX(25.01)持续高于沪深300VIX(18.92),反映小盘股波动风险溢价[61] 3. **SKEW因子** - 中证500SKEW(102.27)与高VIX形成共振,提示尾部风险[70]