Workflow
世界模型
icon
搜索文档
图灵奖得主杨立昆被曝将离职Meta创业
财富FORTUNE· 2025-11-16 13:06
杨立昆职业变动与影响 - 杨立昆已告知同事将在几个月后离开Meta公司,计划创办自己的公司[2] - 杨立昆是图灵奖得主和AI领域顶尖研究者,他于2013年12月加入Facebook并担任基础AI研究室创始主任[2] - 他的离职被视为Meta公司乃至整个AI行业的一个重要转折点[2] 杨立昆的学术成就 - 上世纪80年代末研发出卷积神经网络,其开发的LeNet架构成功识别手写字体,掀起计算机视觉领域革命[2] - 2019年与杰弗里・辛顿、约书亚・本吉奥因深度学习突破性贡献被授予图灵奖,为深度神经网络成为当代计算机科学核心技术奠定基础[2] - 在AT&T贝尔实验室研发的卷积神经网络技术被应用于银行支票读取机,高峰期处理全美国10%至20%的支票[4] Meta公司AI战略调整 - Meta公司正对AI战略进行全面调整,今年6月向数据标注公司Scale AI投资143亿美元,并聘请其CEO领导新成立的"Meta超级智能实验室"[5] - 公司结构调整导致杨立昆汇报关系变更,从向首席产品官汇报改为向新部门负责人汇报[5] - Meta的Llama 4模型未达预期,公司在AI整体上落后于OpenAI和谷歌等竞争对手[5] 行业战略分歧与影响 - Meta老板马克・扎克伯格倾向于加快部署大语言模型和AI产品,而杨立昆公开对大语言模型持怀疑态度,认为其无法达到人类级别推理和规划能力[5] - Meta资源向商用AI倾斜导致长期研究受忽视,FAIR实验室处于半死不活状态,Llama模型原始研究论文作者超过一半在论文发表后数月内离开公司[6] - 今年10月份Meta裁撤AI部门约600个岗位,杨立昆离职突显行业内对达到通用型人工智能路径的核心分歧[6] 杨立昆新公司方向 - 新公司聚焦于"世界模型",通过学视频和空间数据对环境产生内在理解,而非单纯依赖文本数据[5] - 该系统旨在模拟因果场景并预测结果,但可能需要十年左右时间才能成熟[5] - 创业计划目前处于洽谈融资初期阶段[5]
内行被外行指导、时刻担心被裁,Meta 人现在迷茫又内卷
AI前线· 2025-11-16 05:33
核心事件概述 - Meta首席人工智能科学家Yann LeCun计划在未来几个月内离职并创办AI初创企业[2] - 新公司方向将聚焦于世界模型的研究与落地[7] - LeCun在Meta的纽约大学兼职教授职位将保持不变[2] Meta AI战略转向 - 公司AI战略重心从LeCun领导的FAIR实验室的长期基础研究转向快速推出模型和AI产品[2][4] - 核心AI研究部门FAIR经历裁员其影响力被专注产品落地的GenAI团队/TBD Lab取代[4] - 组织调整导致LeCun被要求向TBD Lab负责人Alexandr Wang汇报[4] LeCun与Meta的分歧 - LeCun对Meta新出台的内部研究发表规定不满认为其限制了学术自由[4] - 在AI技术路线上存在分歧LeCun认为大模型无法实现人类级智能而致力于世界模型研究[4][5][10] - LeCun公开撇清与Llama 2/3/4项目的关系称自2023年初以来均由GenAI团队开发[5] - 政治立场分歧可能加剧紧张关系LeCun批评美国政府而公司政策向特朗普阵营靠拢[5] Meta内部管理问题 - AI部门存在恐惧文化绩效评估制度与滚动裁员机制导致员工为害怕被炒而工作[18] - 生成式AI战略缺乏方向部门职责不断叠加导致内部冲突和模糊目标[18][19] - 项目管理采用倒排工期方式为赶工期而牺牲产品质量基于技术判断的叫停难以实现[15] - 高层管理者多为基础设施或传统计算机视觉背景对大语言模型缺乏深入理解形成外行指导内行局面[14] 行业竞争与影响 - Meta的Llama 4模型表现不佳落后于GoogleOpenAI和Anthropic的最新产品[4] - 公司AI聊天机器人未能在消费者中获得认可[4] - 扎克伯格暗示明年AI投入可能突破1000亿美元后公司股价暴跌12.6%市值蒸发近2400亿美元[13] - 大模型时代算力成为决定性因素资源博弈导致公司整体氛围不如以前轻松愉快[13]
李飞飞和LeCun的世界模型之争
具身智能之心· 2025-11-15 16:03
文章核心观点 - AI领域三大力量(李飞飞团队、LeCun、谷歌DeepMind)正以三种截然不同的技术路线进军“世界模型”,分别代表了“世界模型即界面”、“世界模型即模拟器”和“世界模型即抽象引擎”的范式 [3][30][39] - 三种技术路线在应用场景、技术重点和商业化潜力上各有千秋,共同构成了一个从具体到抽象的“世界模型金字塔” [39][47][48] 主要参与者与技术路线 - **李飞飞团队 - Marble模型**:定位为前端资产生成器,通过3D高斯生成流水线,从文本提示直接生成持久、可下载的3D环境,可导出为高斯斑点、Mesh网格或视频 [5][6][16][29] - **LeCun - JEPA模型**:定位为后端预测系统,根植于控制理论和认知科学,专注于构建抽象表征以捕捉世界状态,用于机器人行动前的预判,更像机器人的“大脑” [23][25][26][27] - **谷歌DeepMind - Genie 3模型**:定位为世界模型式视频生成器,从文本提示生成可交互的视频环境,解决了长时一致性问题并支持触发世界事件,如开始下雨或夜幕降临 [31][32][34][35] 技术特点与应用对比 - **Marble**:优势在于高精度的3D资产生成和商业化潜力,尤其适用于游戏和VR开发者的工作流程,可一键导出到Unity [9][21][38] - **Genie 3**:优势在于生成动态、可交互的视频世界,但画面质量和分辨率有限,核心仍是视频逻辑而非物理因果逻辑 [34][35][36][38] - **JEPA**:优势在于对世界本质和因果结构的理解,是机器人理想的训练基地,但无法生成可供人欣赏的视觉画面 [25][27][28][45] 世界模型范式分类 - **世界模型即界面(以Marble为代表)**:关注“世界长什么样”,生成可供人观看与交互的三维空间 [39][41][42] - **世界模型即模拟器(以Genie 3为代表)**:关注“世界怎么变”,生成连续、可控的视频环境供智能体训练 [39][43] - **世界模型即抽象引擎(以JEPA为代表)**:关注“世界的结构是什么”,以高度抽象的潜在变量形式呈现,最适合机器人推理 [39][44][45]
李飞飞和LeCun的世界模型之争
量子位· 2025-11-15 05:00
文章核心观点 - AI领域三大力量(李飞飞的World Labs、LeCun、谷歌DeepMind)正从三种截然不同的技术路线进军“世界模型”,这标志着AGI的发展路径在此交汇[1][2][3] 李飞飞World Labs的Marble模型 - 公司推出首款商用世界模型Marble,其核心是生成持久、可下载的3D环境,显著减少场景变形和细节不一致的问题[5][6] - 模型能将生成的世界导出为高斯斑点、Mesh网格或直接导出视频,并内置原生AI世界编辑器Chisel,用户通过一句提示即可自由改造世界[6][7] - 该模型为游戏或VR开发者提供了“一句提示→直接生成3D世界→一键导出到Unity”的实用工作链路,商业化潜力显著[9][22] - 有行业观点认为,Marble更像是一个3D渲染模型或3D高斯生成流水线,它捕捉的是世界的视觉表面而非内在的物理规律,因此可能不适用于机器人训练[10][11][12][18][20][21] LeCun的JEPA模型 - LeCun的“世界模型”根植于控制理论和认知科学,其任务不是渲染精美像素,而是让机器人能提前预判世界变化,更像是在训练机器人的“大脑”[24][25][26][28] - 该模型专注于捕捉用于AI决策的世界状态抽象表征,无需浪费算力生成像素,优势在于对世界本质的理解,是机器人理想的训练基地[27][29][51] - 与Marble相比,JEPA是一个高度抽象的后端预测系统,没有可供人欣赏的画面,但更贴近AI的思维方式[30][50] 谷歌DeepMind的Genie 3模型 - 谷歌DeepMind推出的Genie 3是一个可交互的视频环境生成模型,用户可通过一句Prompt在其中自由探索数分钟[32][33] - 该模型首次在同类模型中解决了长时一致性问题,并支持触发如“开始下雨”等世界事件,过程类似由模型驱动的电子游戏[35][36] - 行业分析认为,Genie 3的核心仍是视频逻辑,可被视为“世界模型式视频生成器”或“模拟器”,虽能让世界动起来,但未能完全理解画面背后的物理规律[37][38][39][47] - 其画面质量和分辨率有限,难以与Marble的高精度3D资产相比,但可作为智能体(如SIMA 2)的“虚拟健身房”进行训练[40][41][48] 世界模型的三种技术范式 - 世界模型即界面:以Marble为代表,直接从文字或二维素材生成可编辑、可分享的三维环境,世界是呈现给人的可视空间[43][44][45] - 世界模型即模拟器:以Genie 3为代表,生成连续、可控制的视频式世界,作为智能体反复试错的虚拟环境[46][47][48] - 世界模型即认知框架:以JEPA为代表,以高度抽象的潜在变量和状态转移函数呈现世界,是机器人完美的训练基地[49][50][51] - 三者可构成“世界模型金字塔”:从底部的Marble(对人类最真实)到顶部的JEPA(对AI最易理解),越往上越抽象,越适合机器人训练与推理[53][54]
李飞飞「世界模型」正式开放,人人可用, Pro版首月仅7元
36氪· 2025-11-14 13:36
产品发布与定位 - World Labs公司推出的Marble世界模型正式上线,面向公众开放使用[3][4][21] - 该产品是首个能创建持久化、可下载3D环境的世界模型,区别于实时生成模型[21] - Marble提供AI原生编辑工具和混合3D编辑器,用户可先构建空间结构框架再由AI填充细节[23] 核心技术功能 - 模型支持通过单张2D图片或简短文字提示生成完整的3D世界[34] - 支持多图像提示技术,能将针对世界不同部分的多样化提示图像无缝融合成统一3D世界[39][40] - 具备多模态输入能力,可接收照片或短视频素材组合生成包含现实空间元素的3D世界[44] - 内置AI原生世界编辑工具Chisel,支持移除物体、修饰区域、改变视觉风格等精细操作[47][52] 产品体验与效果 - 生成内容可任意旋转镜头、放大缩小,效果逼真类似3A游戏大作[11] - 支持将生成的世界导出为高斯溅射点、三角网格模型及视频格式[56][58][62] - 通过集成THREE.js的渲染器Spark,可在浏览器中实时渲染高斯溅射点[57] 商业模式与定价 - 目前提供免费版、标准版(20美元/月)、专业版(95美元/月)三档付费计划[82][84] - 免费版本限生成4个世界且仅支持图片上传,专业版最多可生成75个世界[82][83] - 下载作品及部分高级功能(如高质量网格创建、视频增强)需充值或订阅高级计划[22][87]
空间智能系列之三:物理AI:数字孪生、具身智能实现基石
申万宏源证券· 2025-11-14 12:45
报告行业投资评级 - 行业评级:看好 [1] 报告核心观点 - 物理AI是让AI走向现实世界的系统性工程,融合空间智能及世界模型,将引领下一个AI浪潮 [3][5][11] - 物理AI的实现依赖于世界模型、物理仿真引擎与具身智能控制器三大技术协同 [3][16] - 英伟达凭借“芯片-算法-平台”全栈布局,在物理AI领域具备先发优势 [3][25] - 数字孪生是物理AI目前最成熟的应用,智能驾驶与具身智能是未来最具想象空间的两大应用 [3][5][47] - 物理AI产业链已形成清晰的价值分布,各环节均出现重要变化和投资机会 [3][4][72] 物理AI概念与技术框架 - 物理AI核心结构可简化为“空间智能(感知基座)——世界模型(认知及决策中枢)——物理AI(系统整合载体)” [3][5][12] - 空间智能是AI感知、理解和推理三维空间及其内部物体关系的能力,当前先进的多模态大语言模型在空间推理任务上仍逊于人类 [13] - 世界模型为AI系统提供内部物理世界模拟器,使其能够预测行动结果而无需现实试错,学习方式多为无监督学习 [16] - 物理AI与传统AI在处理对象、核心能力、训练数据、技术基础和应用场景上存在显著差异 [24] - 物理AI的实现依赖于三大技术支柱协同:世界模型负责构建三维空间完整理解,物理仿真引擎负责实时计算物理交互,具身智能控制器连接虚拟推理和物理执行 [3][16] 英伟达的生态布局与优势 - 英伟达2019年提出Omniverse作为3D实时协作平台,已构建起较为完整的产业生态护城河 [3][25] - 2025年1月英伟达推出世界基础模型Cosmos并开源,能理解世界语言、物理特性、空间位置等要素,并合成物理数据 [30] - Cosmos模型获得重大更新,包括开源可定制的70亿参数推理视觉语言模型Cosmos Reason和专注于合成数据生成的Cosmos Transfer-2模型 [33][35] - 英伟达已建立完整的物理AI使用流程:构建虚拟3D环境(Omniverse)、生成合成数据(Cosmos)、训练验证(DGX平台)、部署(Jetson Thor等下一代机器人设备) [38][41][42] - Cosmos首批用户包括1X、Agile Robots、Figure AI、小鹏汽车等十余个国内外机器人和汽车厂商 [37] 世界模型进展与商业化应用 - 谷歌DeepMind推出通用世界模型Genie 3,基于文本提示以每秒24帧、720p分辨率生成长达数分钟的交互式3D环境 [43] - 主流世界模型(如Meta V-JEPA、英伟达Cosmos、谷歌Genie3)在核心共性、技术侧重和优劣势上各有特点 [45] - 世界模型在训练端可生成符合物理规律的高质量合成数据,解决真实数据稀缺与长尾场景覆盖问题;在推理端通过物理推理模型实现感知-决策-执行闭环控制 [59][60][65] 物理AI核心应用场景 数字孪生 - 数字孪生是实体资产和流程的虚拟映射,企业借助其优化设计、仿真与运营效率,成为工业数字化转型的核心工具 [48] - 数字孪生通过集成多维数据源构建虚拟模型,并依赖物联网实现数字与物理世界的动态同步 [49] - 该技术为企业带来显著效益,宝马集团通过工厂数字孪生将规划效率提升近30%,纬创实现气流仿真速度提高15000倍 [52] - 数字孪生已渗透至制造业、能源、医疗与城市管理等广泛行业,如富士康通过虚拟工厂优化机器人部署 [54][57] 智能驾驶与具身智能 - 智能驾驶及具身智能目前主流方案包括端到端、VLA(视觉-语言-动作模型)、世界模型 [3][69] - 端到端模型是目前最成熟的前期方案,但因其“黑箱”输出遇到稳定性瓶颈;VLA模型凭借可解释性及LLM模型能力基础表现优异,但对边缘侧算力要求过高;世界模型可实现更前瞻推理,支持复杂思维实验,可能成为未来重要商业化路线 [3][69] - 智能驾驶领域代表厂商:特斯拉(端到端)、小鹏/理想/元戎(VLA)、英伟达/华为/蔚来/Momenta(世界模型) [69] - 具身智能领域代表:Google RT-2(端到端)、Figure(VLA)、DeepMind/Meta(世界模型) [69] 物理AI产业链梳理 芯片及控制器 - 芯片与控制器是物理AI的硬件中枢,承担环境感知、实时计算与运动控制的核心功能 [73] - 英伟达基于Blackwell架构推出Jetson AGX Thor和DRIVE Thor计算平台,Jetson Thor的AI计算能力是上一代Orin的7.5倍,最高达2070 TFLOPS(FP4),能效是上一代的3.5倍 [73][75] - 主控芯片领域呈现多元化竞争格局,除英伟达外,高通、地平线以及小鹏、蔚来等自研芯片厂商均在特定场景实现差异化竞争 [75][76] - 控制器厂商价值量提升,智微智能推出完整的机器人“大脑-小脑”分层方案,天准科技发布新一代千TOPS级高算力具身智能大脑产品星智007 [77][80][81] 数据供应 - 符合物理规律的高质量数据是训练物理AI模型的前提,获取成本与规模构成核心壁垒 [85] - CAE仿真与合成数据生成成为物理AI的“数据工厂”,索辰科技利用多物理场仿真技术生成高保真合成数据 [85][86] - CAD厂商积累大量细分场景下具备物理属性的空间信息,群核科技发布高质量3D高斯语义数据集InteriorGS,包含1000个3D高斯语义场景 [88] - 3D视觉厂商(思看科技、奥比中光、凌云光)负责现实世界感知与数字化,为仿真提供初始模型并进行数据采集校准 [91] 模型和算法 - 模型与算法构成物理AI产业的“智能核心”,产业格局呈现四类主要参与者:全球科技巨头(英伟达、谷歌)、专注于空间智能与世界模型的第三方平台、第三方算法解决方案提供商(如Momenta)、整机厂自研(小鹏、理想、优必选) [95][96][97][101] 落地和应用 - 落地应用是物理AI价值的最终体现,系统集成商与行业解决方案提供商是推动技术赋能千行百业的关键 [102] - 该环节核心竞争壁垒体现在对垂直行业的深度理解、与底层技术平台的深度合作关系以及提供端到端解决方案建立的客户粘性 [102][103] - 亚信科技将自研数字孪生平台、MaaS平台、智能体平台与NVIDIA Omniverse集成融合,为网络、工业制造、城市治理等场景提供一站式数字孪生解决方案 [104] 产业链核心标的 - 控制器:智微智能、天准科技、德赛西威 [3][109] - 数据供应:索辰科技、群核科技(拟上市)、思看科技、奥比中光-UW、凌云光 [3][112] - 模型和算法:索辰科技 [3][112] - 落地和应用:亚信科技 [3][112] - 整机厂商:小鹏汽车-W、极智嘉-W [3][112]
李飞飞长文火爆硅谷
投资界· 2025-11-14 08:01
文章核心观点 - 空间智能是人工智能发展的下一个前沿领域,将推动大语言模型实现下一次质的飞跃 [4][6] - 构建具备空间智能的“世界模型”是解锁AI在创造力、机器人、科学、医疗和教育等领域潜力的关键技术路径 [8][16][18] - 世界模型需具备生成性、多模态和交互性三大核心能力,其技术挑战远超以往,但应用前景将深刻重塑人类与物理及虚拟世界的交互方式 [4][18][21] 空间智能的定义与重要性 - 空间智能是人类认知的脚手架,支撑着从日常动作到科学发现等一系列与物理世界互动的基础能力 [11][14] - 当前AI(如多模态大语言模型)的空间能力远未接近人类水平,在估计距离、方向、大小及预测物理规律等任务上存在根本性局限 [14][15] - 缺乏空间智能导致AI与物理现实脱节,无法安全驾驶汽车、引导家庭与医院中的机器人,或创造全新的沉浸式学习与娱乐体验 [16] 世界模型的核心能力与技术挑战 - 生成性:模型需能生成遵守物理定律、空间一致的虚拟世界,并保持世界状态的连贯性 [4][18][19] - 多模态:模型需能处理从图像、视频、深度图到文本指令、手势、动作等多种形式的输入 [4][19][20] - 交互性:模型需能根据输入的动作或目标,预测并输出世界的下一个状态 [4][20] - 技术挑战规模超越以往,需克服在通用训练任务函数、大规模多模态训练数据以及新型模型架构与表征学习等方面的巨大壁垒 [21][22][23] 世界模型的应用潜力 - 创造力:赋能电影人、游戏设计师、建筑师等创作者快速构建、迭代和探索三维世界,变革叙事与沉浸体验 [26][28][29] - 机器人:通过生成高质量仿真数据,扩展机器人学习,实现具备空间感知能力的人机协作伙伴及多样化的具身形态 [30][31][32] - 科学、医疗与教育:在科学研究中模拟实验、在医疗领域加速药物研发与辅助诊断、在教育领域实现沉浸式学习,增强人类专长与发现能力 [33][34][35] 行业发展趋势与公司进展 - World Labs公司成立于2024年初,致力于世界模型的基础性突破,其开发的Marble平台是全球首个可通过多模态输入生成一致性3D环境的世界模型 [8][23][26] - 行业共识认为,下一代世界模型将使机器在空间智能上达到新层次,开启AI理解与创造世界的时代,需要整个AI生态系统的集体努力 [24][26][27]
“读万卷书”不如“行万里路”!芯原股份掌舵人戴伟民详解AI芯片下一站:端侧推理与场景落地
新浪证券· 2025-11-14 04:08
行业趋势:AI芯片市场发展 - AI定制化芯片(AI ASIC)需求正显著增长 [1] - GPU与AI ASIC是相辅相成的关系,GPU侧重通用灵活部署,AI ASIC侧重极致性价比 [3] - AI模型持续演进和更新,对算力提出了全新、多样化的要求 [4] 技术演进:AI发展路径 - AI发展需从“读万卷书”(大语言模型训练)跃迁至构建理解人类情感和复杂场景的“世界模型” [4] - 未来AI需要处理空间、物理和上下文信息,进行真正的“思考” [4] - 端侧主要进行推理和微调两种AI计算工作 [5] 市场机遇:端侧AI潜力 - 端侧推理崛起,在手机、汽车、智能眼镜、物联网设备等终端上进行模型推理和微调是未来AI落地和商业化关键 [5] - 端侧智能将成为比云端训练更大的市场机遇,是下一个万亿级黄金赛道 [8] - 端侧应用的核心在于可“离线”执行,体验更流畅自然且注重隐私和安全 [7] 公司战略:芯原股份布局 - 公司在AI加速处理器(如GPU、GPGPU、ASIC)上均有布局,可为不同应用场景定制芯片 [3] - 公司核心战略是依托半导体IP储备和芯片设计服务能力,为端侧革命提供AI ASIC解决方案 [8] - 公司看好AI在智能眼镜上的应用,认为这是一个潜在的增量市场,可实现实时离线语音翻译和场景交互 [7] 应用场景:端侧AI实践 - 在智能手机上,通过AI相关定制芯片可实现远超当前的拍照效果、画质优化和功耗控制 [7] - AI玩具是教育领域的重要颠覆,可通过搭载小模型根据孩子所见所闻即时生成故事并模仿父母声音讲述 [7] - 智能眼镜、AI玩具等端侧应用蕴藏巨大商机 [6][7]
LeCun在Meta的最后一篇论文
36氪· 2025-11-14 03:04
LeJEPA方法核心创新 - 提出潜在欧几里得联合嵌入预测架构(LeJEPA),通过使嵌入空间遵循特定统计分布来提升预测性能[2] - 核心创新是草图化各向同性高斯正则化(SIGReg),这是一种可处理、可证明正确的正则化方法,通过单变量方向检验结合Epps-Pulley测试判断嵌入分布匹配程度[6] - 研究表明各向同性高斯分布是嵌入空间的最佳分布,可在没有任务信息情况下保证最小化偏差和方差,提高下游任务表现[5] 技术优势与实验验证 - 等向高斯分布能够最小化训练过程中的偏差和方差,在总方差相同情况下,非等向分布会导致更高偏差和方差[3] - 在ViT、ConvNeXt、ResNet、MaxViT和Swin Transformer等大型架构上进行实验,模型规模接近10亿参数[8] - 实验显示LeJEPA在这些架构上表现超越现有方法,在Galaxy10、Food101等特定领域数据集上直接预训练时超越了基于DINOv2的迁移学习方法[10] JEPA架构发展历程 - JEPA(联合嵌入预测架构)是自监督学习框架,旨在通过嵌入空间联合预测方法提升模型表达和推理能力,与生成式模型不同,仅捕捉依赖关系而不显式生成预测[16] - JEPA可进一步通过分层架构(H-JEPA)增强抽象能力,低层处理短期预测,高层用于长期预测,提高可预测性和减少信息损失[18] - JEPA架构与世界模型密切相关,通过学习状态与动作转移训练世界模型,从当前状态表示推断未来状态表示[20] JEPA系列模型演进 - I-JEPA充分利用Transformer架构灵活性,上下文编码器是ViT仅处理可见上下文块,预测器根据位置标记预测特定位置目标块表示[24] - V-JEPA是I-JEPA在视频领域扩展,将视频视为3D图像,通过屏蔽视频序列token进行训练,V-JEPA 2进一步提升了动作预测和世界建模能力[26][28] - MC-JEPA是JEPA扩展,使其包含运动信息,在视频中使用光流估计学习运动,通过图像视角联合嵌入学习内容,以多任务方式共享编码器[30] 行业影响与人物动态 - LeCun在Meta期间个人被引次数大幅增长至406,919次,占总引用数的93%,深度学习爆发期个人学术影响力显著提升[37] - LeCun已离开Meta并筹集资金创办初创公司,继续推进在世界模型方面的工作,尽管面临从学术研究向商业环境转型的挑战[33] - LeCun2013年加入Meta后推动了公司AI转型,成为行业金字招牌,Meta也为其提供了自由的研究环境,这段合作促进了整个AI领域发展[40]
王振辉接替胡伟出任京东物流CEO;滴滴自动驾驶出海首站落地阿布扎比 | 早资道
搜狐财经· 2025-11-14 01:12
京东物流管理层变动 - 京东物流首席执行官及执行董事职务由王振辉接替胡伟 [2] - 此项人事变动自2025年11月13日起生效 [2] - 胡伟辞任原因为将于京东集团担任其他职务 [2] 滴滴自动驾驶业务拓展 - 滴滴自动驾驶与阿布扎比投资办公室达成战略合作 正式加入阿布扎比智能和自动驾驶汽车产业集群SAVI [3] - 合作内容涵盖自动驾驶技术创新应用 AI人才培养及生态建设 [3] - 该合作是滴滴自动驾驶全球化布局的首站 计划逐步拓展至整个中东地区 [3] 阿里云大模型服务定价调整 - 阿里云大模型服务平台百炼对通义千问3-Max模型实行降价 [4] - 降价措施包括batch调用半价 隐式缓存命中部分按输入Token标准单价的20%计费 [4] - 显式缓存创建Token按输入Token标准单价的125%计费 后续命中仅支付10%费用 [4] 腾讯与苹果合作动态 - 腾讯总裁刘炽平在财报电话会回应与苹果就微信小游戏收费事宜的讨论 [5] - 腾讯与苹果关系良好 双方一直在讨论如何使小游戏生态更活跃 [5] - 腾讯表示未来可能会有关于小游戏收费的正式批准 [5] 人工智能技术产品发布 - 李飞飞教授创业公司World Labs推出首款商用世界模型Marble [6] - Marble支持大规模多模态 可从文本图像视频或粗略3D布局创建3D世界 [6] - Marble允许用户交互式地编辑扩展和组合世界 [6]