Workflow
VLM
icon
搜索文档
2025中国高阶智能辅助驾驶最新技术洞察:算力跃迁、数据闭环、VLA与世界模型
亿欧· 2025-06-05 05:42
报告行业投资评级 未提及相关内容 报告的核心观点 - 高阶智能辅助驾驶技术需在算法、数据、算力升级的同时解决安全短板,推动技术迭代与安全验证同步发展 [23] - 车端算法架构从模块化向端到端演进,一段式端到端VLA推动智能驾驶从“数据驱动”向“认知驱动”跃迁,多段式端到端E2E+VLM将被替代 [66] - VLA大模型“类人决策”特点将重塑智能辅助驾驶竞争格局,车企需平衡算法创新、工程落地与成本控制 [69] - 全栈自研仅头部新势力可长期维持,自研+外采将成多数车企主流选择,全栈外采在中低端车型仍有空间,行业呈“分层竞争、多元共存”格局 [83] - 尽管车企和政策推动L3落地,但大规模商业化需突破技术长尾问题与伦理争议,未来两年是关键窗口期,L3规模化上车进度可能放缓 [99] 根据相关目录分别进行总结 中国高阶智能辅助驾驶市场背景 - 高阶辅驾ODD再扩展:未提及具体内容 - 科技平权与技术普惠:未提及具体内容 - 事故焦虑与安全冗余:今年部分头部车企智能辅助驾驶NOA功能事故暴露技术边界与用户认知错配,引发安全信任危机;工信部发文规范宣传,为行业过热宣传降温;技术需在多方面升级同时解决安全短板 [21][23] - 政策护航与理性宣传:2025年4月16日,工信部发布通知规范智能网联汽车驾驶辅助功能宣传及技术验证,禁止夸大能力,要求功能验证周期与用户安全教育 [23] 中国高阶智能辅助驾驶技术洞察 高阶智能辅助驾驶技术洞察 - 解码算力、数据、算法的技术底层逻辑:未提及具体内容 高阶智能辅助驾驶算力洞察 - 车端算力:向千级TOPS跃迁,大算力芯片加速普及,国产芯片未来可期;目前国内量产芯片多≤200TOPS,未来500 - 1000TOPS+芯片将成主流;车端受硬件算力限制,依赖云端大模型,架构向端到端转型;未来车端将实现端到端大模型本地化部署,车规级芯片算力上限将突破 [42][43][44] - 云端算力:未提及具体内容 高阶智能辅助驾驶数据洞察 - 数据难题:未提及具体内容 - 数据采集:未提及具体内容 - 定位技术:未提及具体内容 高阶智能辅助驾驶算法洞察 - 端到端、VLA、世界模型:车端算法以端到端架构为基础,VLM辅助E2E处理复杂决策,VLA融合多模态信息提升泛化能力;云端模型从模仿学习演进至生成式世界模型,构建闭环训练系统支撑车端模型泛化能力升级 [61] - 算法架构:从模块化到多段式端到端再到一段式端到端演进,一段式端到端VLA推动智能驾驶跃迁,多段式端到端E2E+VLM将被替代 [65][66] - VLA:起源于2023年谷歌探索,2025年上车引领智能辅助驾驶升级,但面临算力、数据成本、推理延迟等挑战,需强化多模态融合、车云协同 [68][69] 中国高阶智能辅助驾驶竞合分析 企业梯队与产业图谱 - 未提及具体内容 开发策略与合作模式 - 开发策略:主机厂智能辅助驾驶方案开发策略分软硬全栈自研、自研+外采、软硬全栈外采;全栈自研技术壁垒高但资金/人才门槛高,自研+外采平衡成本与技术,全栈外采快速量产、成本可控 [82] - 合作模式:包括全栈自研、自研+外采、全栈外采;全栈自研仅头部新势力可维持,自研+外采成主流,全栈外采在中低端车型有空间 [83] 中国高阶智能辅助驾驶趋势洞察 乘用车L3商业化进展 - 2025年主机厂陆续发布L3、L4量产规划,数据积累与政策协同推动安全升级;L3级自动驾驶ODD限定在高速路段,L4级可在城市限定区域运行;L3大规模商业化需突破技术长尾问题与伦理争议,未来两年是关键窗口期,规模化上车进度可能放缓 [96][97][99]
AI 如何成为理想一号工程
晚点LatePost· 2025-05-23 07:41
公司战略调整 - 2023年10月秋季战略会将智能辅助驾驶业务优先级提升至第一战略,车机端理想同学从最高优先级(IP0)降至最低(IP2)[4] - 2023年初确立"2030年成为全球领先人工智能企业"愿景[5] - 2024年1月设立AI技术委员会整合各部门AI资源,成员包括产品部和各研发部门负责人[15][16] AI产品发展 - 车机端理想同学基于T5架构打造10亿参数模型,2023年12月推出多模态认知大模型Mind GPT 1.0[6][7] - 2024年3-4月开发理想同学App,12月底上线手机端应用,2024年3月推出网页版[7] - 基座模型部门升级为二级部门,目标进入行业前三[17] 智能辅助驾驶进展 - 2020年9月组建自研团队,2022年L9上市搭载AD Max系统[9] - 2023年10月扩招50余个岗位,团队规模突破千人[10] - 2024年7月启动"端到端+VLM"千人内测,10月实现量产上车[10][11] - 技术路线从"端到端+VLM"转向VLA架构,VLA模型具备3D视觉和物理世界理解能力[12] 组织架构调整 - 2024年初总裁马东辉接替李想负责智能汽车战略,李想专注AI方向[13] - 2023年设立AI周会制度,2024年升级为AI技术委员会[14][15] - 基座模型负责人陈伟汇报对象调整为CTO谢炎,部门级别提升[16][17] 技术路线演进 - 初期采用供应商方案,2021年启动理想同学自研[6] - 2022年探索大规模语言模型应用,2023年实现算法全自研[6][7] - 智能辅助驾驶从依赖高精地图转向"无图"方案,最终采用VLA架构[11][12]
TransDiffuser: 理想VLA diffusion出轨迹的架构
理想TOP2· 2025-05-18 13:08
文章核心观点 - 文章详细解释了Diffusion模型在自动驾驶轨迹生成中的应用,特别是理想汽车VLA(Vision-Language-Action)系统的技术架构和创新点 [1][4][6] - 理想汽车的VLA系统通过Diffusion模型生成驾驶轨迹,相比VLM(Vision-Language-Model)系统具有更强的拟人感和决策能力 [1][2][4] - TransDiffuser模型通过多模态感知信息融合和去相关优化机制,显著提升了轨迹生成的多样性和质量 [6][11][12] 什么是Diffusion - Diffusion是一种通过加噪和去噪过程学习数据分布的生成模型,核心思想类似于逆向拼图 [4] - 相比GAN和VAE等其他生成模型,Diffusion在生成质量和稳定性上具有优势 [4] - 理想汽车采用ODE采样器将Diffusion生成步骤从几十步减少到2-3步,大幅提升效率 [5] 理想VLA系统的技术特点 - VLA是一个具备快慢思考能力的单一系统,直接输出action token并通过Diffusion解码为轨迹 [4] - 系统能同时生成自车轨迹和预测其他交通参与者轨迹,提升复杂环境博弈能力 [5] - 当前系统输出轨迹而非直接控制信号,但未来可能演进到直接输出油门/方向盘信号 [3] TransDiffuser架构细节 - 模型采用编码器-解码器结构,融合图像/LiDAR/运动状态等多模态信息 [6][7] - 场景编码器处理前视图像(8视角)和LiDAR数据(5传感器),输出BEV/图像/点云特征 [7][10] - 去噪解码器基于DDPM算法,通过10步迭代生成覆盖4秒的8个waypoints轨迹 [9][11] - 在NAVSIM数据集上PDMS指标达到94.85,优于Hydra-MDP++等现有方法 [11] 关键创新点 - 无锚点轨迹生成:不依赖预设轨迹或词汇表,直接从感知数据生成轨迹 [11] - 多模态去相关优化:解决模式崩溃问题,提升轨迹多样性且计算开销低 [11][12] - 采用256批量大小分布在4个NVIDIA H20 GPU上进行训练 [10] 局限性与未来方向 - 模型微调存在困难,特别是感知编码器部分 [13] - 未来可能结合强化学习,并参考OpenVLA等先进模型架构 [13] - 直接输出控制信号(油门/方向盘)是更难的挑战,短期内难以实现 [3]