Workflow
《端到端与VLA自动驾驶小班课》
icon
搜索文档
世界模型是一种实现端到端自驾的途径......
自动驾驶之心· 2025-12-18 03:18
文章核心观点 - 世界模型并非端到端自动驾驶本身,而是一种实现端到端自动驾驶的技术途径[2][5] - 端到端自动驾驶定义为没有显式信息处理与决策逻辑,从信息输入直接输出决策结果的模型[3] - 世界模型定义为接受信息输入,内在建立对环境的完整认知,能够重建和预测未来变化的模型[4] - 行业正通过推出专业课程,系统性地传授世界模型在自动驾驶领域的算法、应用与实战经验,以推动技术落地和人才培养[5][15] 课程内容与结构 - 课程共分六章,从概述、基础知识到前沿模型、实战应用及行业经验,系统覆盖世界模型技术栈[10][11][12][13][14] - 第一章介绍世界模型与端到端自动驾驶的联系、发展历史、应用案例、不同技术流派及其在业界解决的问题环节[10] - 第二章讲解世界模型涉及的背景知识,包括场景表征、Transformer、BEV感知等,是求职面试高频技术点[10][11] - 第三章探讨通用世界模型,解析李飞飞团队Marble、DeepMind Genie 3、Meta JEPA、导航世界模型、DriveVLA-W0及特斯拉世界模型模拟器等热门工作[11] - 第四章聚焦视频生成类世界模型,涵盖Wayve的GAIA-1 & GAIA-2、上交UniScene、商汤OpenDWM、中科大InstaDrive等经典与前沿工作,并以商汤OpenDWM进行实战[12] - 第五章聚焦OCC生成类世界模型,涵盖清华OccWorld、复旦OccLLaMA、华科HERMES、西交II-World等三大论文及一个项目实战,该方法可扩展至自车轨迹规划[13][17] - 第六章分享世界模型在工业界的应用现状、行业痛点、解决目标以及相关岗位的面试准备与公司关注点等实战经验[14] 讲师与课程目标 - 讲师Jason拥有C9本科与QS50博士背景,发表多篇CCF-A/B论文,现任国内TOP主机厂算法专家,主持并完成多项自动驾驶感知与端到端算法的量产交付,具备丰富的研发与实战经验[7] - 课程是首个面向端到端自动驾驶的进阶实战教程,旨在推动端到端技术在工业界的落地,帮助学员真正理解端到端[15] - 课程期望使学员达到相当于1年左右经验的世界模型自动驾驶算法工程师水平,掌握技术进展并能复现主流算法框架[18] - 学员需自备推荐算力在4090及以上的GPU,并具备自动驾驶基础、Transformer大模型、扩散模型、BEV感知、概率论、线性代数及Python/PyTorch编程基础[18] 课程安排与形式 - 课程于1月1日开课,预计两个半月结课,采用离线视频教学,辅以VIP群答疑及三次线上答疑,答疑服务截止2026年12月31日[19] - 章节内容按计划逐步解锁:第一章于12月10日解锁,第二章于1月1日解锁,第三章于1月20日解锁,第四章于2月4日解锁,第五章于2月24日解锁,第六章于3月1日解锁[20]
端到端VLA的入门进阶和求职,我们配备了完整的学习路线图!
自动驾驶之心· 2025-12-18 00:06
行业人才需求与趋势 - 近期多家行业中游厂商积极寻求端到端自动驾驶和视觉语言动作模型方向的技术人才 计划在明年投入更多资源进行技术落地 [2] - 对于经验丰富的专家级人才 行业提供的薪酬水平普遍在百万年薪起步 显示出市场对高端技术人才的强烈需求和竞争 [2] 行业培训课程概况 - 为应对工业界明确的技术需求 行业推出了多个聚焦于量产落地的实战培训课程 包括《面向量产的端到端实战小班课》、《端到端与VLA自动驾驶小班课》和《自动驾驶VLA和大模型实战课程》旨在打通从入门、进阶到求职的全链条 [4] - 课程由来自顶尖企业和学术机构的专家授课 师资背景强大 均拥有C9及QS排名前列高校的学历 并在国际顶级会议发表多篇论文 且具备将前沿算法成功量产落地的实战经验 [6][9][14][15] 端到端自动驾驶量产课程 - 该课程聚焦于端到端自动驾驶的量产落地 详细讲解导航信息应用、强化学习优化、Diffusion和自回归模型的量产经验以及时空联合规划兜底等核心模块 [4] - 课程设计了七大落地实战项目 目标人群为已经从事端到端自动驾驶相关工作并希望进阶加薪的从业者 [4] 端到端与VLA宏观技术课程 - 该课程从宏观领域梳理端到端自动驾驶 涵盖一段式/两段式方向的重点算法和理论基础 详细讲解BEV感知、大语言模型、扩散模型和强化学习 [7] - 课程包含两大实战项目 分别是基于扩散模型的Diffusion Planner和基于视觉语言动作模型的ORION算法 [7] 自动驾驶VLA与大模型实战课程 - 该课程由学术界专家带队 全面梳理视觉语言动作模型领域 涵盖从视觉语言模型作为解释器到模块化VLA、一体化VLA以及当前主流的推理增强VLA三大方向 [12] - 课程配套详细的理论基础梳理 包括视觉、语言、动作三大模块以及强化学习和扩散模型等 并设有大作业章节指导学员从零搭建自己的视觉语言动作模型及数据集 [12] - 课程对学员有明确的先决条件要求 包括需要自备算力在4090及以上的GPU、具备自动驾驶领域基础、了解Transformer大模型等技术的基本概念、拥有一定的数学和编程基础 [11]
留给端到端和VLA的转行时间,应该不多了......
自动驾驶之心· 2025-11-25 00:03
课程核心观点 - 自动驾驶技术正从模块化量产算法向端到端和视觉语言动作模型演进,掌握相关前沿技术对职业发展至关重要 [1] - 行业端到端和视觉语言动作模型岗位即将饱和,为从业者留下的窗口期已不多 [1] - 推出《端到端与视觉语言动作模型自动驾驶小班课》和《自动驾驶视觉语言动作模型和大模型实战课程》,旨在帮助学员快速高效入门 [1] 自动驾驶视觉语言动作模型与大模型实战课程 - 课程聚焦视觉语言动作模型领域,内容涵盖从视觉语言模型作为自动驾驶解释器到模块化、一体化及当前主流的推理增强视觉语言动作模型 [1] - 课程配套理论基础梳理,包括视觉、语言、动作三大模块、强化学习、扩散模型等,并设有大作业章节指导学员从零搭建自己的视觉语言动作模型及数据集 [1] - 由学术界专家带队,适合刚接触大模型和视觉语言动作模型的学员 [1] 端到端与视觉语言动作模型自动驾驶课程 - 课程聚焦端到端自动驾驶宏观领域,梳理一段式/两段式方向的重点算法和理论基础,详细讲解鸟瞰图感知、大语言模型、扩散模型和强化学习 [9] - 课程设计两大实战项目:基于扩散模型的Diffusion Planner和基于视觉语言动作模型的ORION算法 [9] - 由工业界专家带队,讲师为国内顶级主机厂算法专家,拥有端到端算法研发和产品量产交付经验 [9][11] 师资团队 - 讲师团队由学术界和工业界专家组成,包括清华大学硕士生、QS30高校博士等,在ICCV、IROS、EMNLP等顶级会议发表多篇论文 [6][8][11] - 团队拥有多模态感知、自动驾驶视觉语言动作模型、大模型Agent等前沿算法预研经验,并主持完成多项自动驾驶框架工具和产品量产 [6][8][11] - 一位讲师在GitHub上维护的自动驾驶与计算机视觉开源项目总Star数已超过2k [6] 目标学员与技术要求 - 学员需自备GPU,推荐算力在4090及以上 [12] - 要求具备一定的自动驾驶领域基础,熟悉基本模块,了解Transformer大模型、强化学习、鸟瞰图感知等技术概念 [13] - 需具备概率论、线性代数基础及Python和PyTorch编程能力 [13]
正式结课!工业界大佬带队三个月搞定端到端自动驾驶
自动驾驶之心· 2025-10-27 00:03
端到端自动驾驶技术发展现状 - 2023年是端到端量产的元年,2025年将是端到端量产的大年,目前头部新势力和主机厂端到端技术均已实现量产[1] - 工业界存在一段式和两段式两种主要技术范式,一段式代表UniAD直接从传感器输入建模自车轨迹输出,二段式基于感知结果进一步输出自车和他车轨迹[1] - 2024年以来一段式端到端快速发展,衍生出基于感知、世界模型、扩散模型和VLA等多种一段式方法[3] 端到端自动驾驶技术体系 - 端到端与VLA技术涉及BEV感知、视觉语言模型VLM、扩散模型、强化学习等核心内容[5] - 主流自动驾驶企业包括智驾方案供应商和车企都在发力端到端自动驾驶的自研量产[3] - 技术栈涵盖学术界和工业界最前沿的方法,二段式端到端与一段式端到端前沿算法都是工业界和学术界的Baseline[5] 端到端自动驾驶课程内容 - 课程第一章介绍端到端发展历史、技术范式演变及优缺点,分析学术界和工业界研究方向[9] - 第二章重点讲解端到端背景知识,包括VLA涉及的大语言模型、扩散模型、强化学习,以及一段式端到端涉及的BEV感知[9] - 第三章聚焦二段式端到端,讲解经典算法PLUTO、CVPR'25的CarPlanner和最新工作Plan-R1[10] - 第四章涵盖一段式端到端子领域:基于感知的UniAD、基于世界模型、基于扩散模型和基于VLA的方法[12] - 课程大作业选择RLHF微调实战,涵盖预训练模块搭建、强化学习模块搭建和实验实施[13] 端到端自动驾驶技术细节 - 基于感知的方法讲解UniAD和地平线VAD,以及CVPR'24的PARA-Drive[14] - 基于世界模型的方法介绍AAAI'25的Drive-OccWorld和复旦团队的OccLLaMA,探讨世界模型在场景生成、端到端和闭环仿真中的应用[14] - 基于扩散模型的方法讲解DiffusionDrive、Diffusion Planner和吉大DiffE2E,配套Diffusion Planner实战[14] - 基于VLA的方法选取小米ORION、慕尼黑工大OpenDriveVLA和最新ReCogDrive,以ORION作为实战案例[14] 端到端自动驾驶学习目标 - 课程是首个面向端到端自动驾驶的进阶实战教程,旨在推动端到端在工业界落地[15] - 学员学完后能达到1年左右端到端自动驾驶算法工程师水平,掌握端到端技术框架和关键技术[19] - 学习成果包括可复现扩散模型、VLA等主流算法框架,并能将所学应用到实际项目中[19]
工业界和学术界都在怎么搞端到端和VLA?
自动驾驶之心· 2025-10-17 00:03
端到端自动驾驶技术趋势 - 端到端算法是当前自动驾驶量产的核心算法,技术栈丰富,业内主要存在一段式和两段式两大类范式 [1] - 一段式范式以UniAD为代表,直接从传感器输入建模自车轨迹输出,而二段式则基于感知结果进一步输出自车和他车轨迹 [1] - 一段式端到端算法可进一步延伸出基于感知、扩散模型、世界模型以及视觉语言模型(VLA)等多种子领域,尤其是基于VLA的算法相关论文正爆发式发表,工业界也在争先量产 [1] 自动驾驶VLA与大模型技术 - 核心算法涉及BEV感知、视觉语言模型(VLM)、扩散模型、强化学习、世界模型等,代表了学术界和工业界最前沿的技术方向 [3] - 自动驾驶VLA与大模型实战课程聚焦VLA领域,内容涵盖从VLM作为自动驾驶解释器,到模块化VLA、一体化VLA,以及当前主流的推理增强VLA [3] - 课程配套理论基础梳理,包括Vision/Language/Action三大模块、强化学习、扩散模型等,并设有大作业章节指导从零搭建VLA模型及数据集 [3] 课程师资与团队 - 课程教师团队包括来自清华大学等顶尖院校的研究人员,在ICCV、IROS、EMNLP等国际顶级会议发表多篇论文,研究方向涵盖多模态感知、自动驾驶VLA、大模型Agent等前沿领域 [8][11] - 教师团队具备丰富的自动驾驶、大模型研发和实战经验,例如有教师主持完成多项自动驾驶感知和大模型框架工具,其维护的开源项目总Star数超过2k [8] - 工业界教师团队包括来自国内顶级主机厂的算法专家,拥有CCF-A/B论文发表记录,并主持完成多项自动驾驶感知和端到端算法的产品量产交付,具备丰富的端到端算法研发经验 [12][14] 端到端自动驾驶课程内容 - 端到端与VLA自动驾驶课程由工业界专家带队,聚焦端到端自动驾驶宏观领域,梳理一段式/两段式方向的重点算法和理论基础 [12] - 课程详细讲解BEV感知、大语言模型、扩散模型和强化学习等关键技术 [12] - 课程设计两大实战项目:基于扩散模型的Diffusion Planner和基于VLA的ORION算法 [12] 课程参与要求 - 参与者需要自备GPU,推荐算力在RTX 4090及以上 [15] - 参与者需具备一定的自动驾驶领域基础,熟悉自动驾驶基本模块,并了解transformer大模型、强化学习、BEV感知等技术的基本概念 [17] - 参与者需具备一定的概率论和线性代数基础,熟悉常用数学运算,并具备一定的Python和PyTorch语言基础 [17]
工业界大佬带队!三个月搞定端到端自动驾驶
自动驾驶之心· 2025-10-12 23:33
端到端自动驾驶行业趋势 - 2023年是端到端量产的元年,2025年将是端到端量产的大年,目前头部新势力和主机厂均已实现端到端量产 [1] - 工业界存在一段式和两段式两种主要范式,一段式代表为UniAD,直接从传感器输入建模自车轨迹输出,二段式则基于感知结果进一步输出自车和他车轨迹 [1] - 自2024年以来,一段式端到端发展迅速,衍生出基于感知、世界模型、扩散模型和VLA等多种一段式方法 [3] 主流企业技术布局 - 主流自动驾驶企业,包括智驾方案供应商和车企,均在发力端到端自动驾驶的自研量产 [3] - 端到端与VLA技术栈涉及BEV感知、视觉语言模型、扩散模型、强化学习等核心内容,是学术界和工业界最前沿的技术方向 [5] 端到端技术核心内容 - 二段式端到端领域涌现出经典算法PLUTO、CVPR'25的CarPlanner以及最新工作Plan-R1等优秀成果 [10] - 一段式端到端子领域包括基于感知的UniAD、基于世界模型的Drive-OccWorld与OccLLaMA、基于扩散模型的DiffusionDrive与DiffE2E,以及基于VLA的ORION与OpenDriveVLA [12][14] - 基于VLA的端到端方法被视为目前端到端自动驾驶的皇冠,上限高且业内招聘需求旺盛,是业界预研的新一代量产方案 [14] 关键技术发展动态 - 扩散模型思想自2024年下半年被引入多模轨迹预测,相比单模轨迹能更好适应自动驾驶不确定环境,并可与其他方法结合实现VLA [14] - 世界模型应用广泛,不仅可用于场景生成、端到端,还可用于闭环仿真,是近两年非常热的技术方向 [14] - VLA技术融合了VLM、BEV、扩散模型、强化学习等多种技术,是端到端发展的前沿 [14]
工业界和学术界大佬带队!彻底搞定端到端与VLA
自动驾驶之心· 2025-10-09 23:32
端到端自动驾驶算法趋势 - 端到端算法已成为自动驾驶量产的核心算法,技术栈丰富,业内主要存在一段式和两段式两大类范式 [1] - 一段式范式以UniAD为代表,直接从传感器输入建模自车轨迹输出,二段式则基于感知结果进一步输出自车和他车轨迹 [1] - 一段式端到端算法可进一步细分为基于感知、扩散模型、世界模型及视觉语言模型(VLA)等多种子领域,尤其基于VLA的算法相关论文正爆发式发表,工业界也在争先量产 [1] 核心技术与课程定位 - 从模块化算法到端到端再到VLA,核心算法涉及BEV感知、视觉语言模型、扩散模型、强化学习、世界模型等,掌握这些技术可把握学术界和工业界最前沿方向 [3] - 行业推出《端到端与VLA自动驾驶小班课》与《自动驾驶VLA和大模型实战课程》,旨在帮助从业者快速高效入门 [3] - 《自动驾驶VLA与大模型实战课程》由学术界专家带队,聚焦VLA领域,涵盖从VLM作为自动驾驶解释器到模块化VLA、一体化VLA及推理增强VLA的三大领域 [3] - 课程配套理论基础梳理与大作业章节,指导学员从零搭建自己的VLA模型及数据集 [3] - 《端到端与VLA自动驾驶课程》由工业界专家带队,聚焦端到端自动驾驶宏观领域,梳理一段式/两段式重点算法,详解BEV感知、大语言模型、扩散模型和强化学习 [10] - 工业界课程设计两大实战项目:基于扩散模型的Diffusion Planner和基于VLA的ORION算法 [10] 师资力量与学员要求 - 课程讲师团队包括来自清华大学等顶尖院校的研究人员,在ICCV、IROS、EMNLP等顶级会议发表多篇论文,研究方向涵盖多模态感知、自动驾驶VLA、大模型Agent等前沿领域 [7][9] - 讲师团队具备丰富的自动驾驶、大模型研发和实战经验,并主持完成多项算法预研、框架工具及产品量产交付 [7][9][10] - 课程面向具备一定自动驾驶领域基础、熟悉Transformer大模型、强化学习、BEV感知等基本概念的学员,要求自备算力在4090及以上的GPU,并具备Python和PyTorch语言基础 [13]
基于模仿学习的端到端决定了它的上限不可能超越人类
自动驾驶之心· 2025-09-24 06:35
自动驾驶VLA技术趋势与行业认知 - 基于模仿学习的端到端自动驾驶本质是模仿人类行为,对物理世界的理解并不透彻 [1] - 端到端技术标志着智能驾驶从规则驱动向数据驱动的根本转变,但在面对复杂困难场景时仍然受限 [2] - 视觉语言模型提供了从模仿人类到成为人类的可能性,其更强大的通用泛化能力为解决corner case提供了新路径 [2] - VLA技术栈尚未收敛,一系列新算法正不断涌现 [3] 自动驾驶VLA实战课程核心内容 - 课程涵盖VLA三大子领域:作为解释器的VLM、模块化与一体化VLA、推理增强VLA [12] - 系统讲解视觉感知、语言模型、动作基础等核心技术模块 [12][21] - 包含大模型与自动驾驶结合的前沿技术:RAG、CoT、RL、MoE等 [12][21] - 提供从数据集定义到模型搭建、训练、性能提升的完整实战路径 [5][23] 课程教学团队与资质 - 讲师团队来自清华大学等顶尖院校,在ICCV、IROS、EMNLP等顶级会议发表多篇论文 [6][7][8][9][10] - 团队具备丰富的自动驾驶、大模型研发和实战经验,GitHub开源项目总Star数超过2k [6][8][10] - 教研团队联合国内外学术力量共同打造国内最新VLA实战课程 [16] 课程特色与学习价值 - 采用Just-in-Time Learning理念,直击学习痛点,帮助学员快速掌握核心技术栈 [17] - 构建领域框架,提升研究能力,帮助学员形成自己的研究体系和工作经验 [18] - 理论结合实践,配备实战环节,完成从理论到实践的完整闭环 [19][23] - 课程预计两个半月结课,采用离线视频教学加VIP群内答疑模式 [43] 自动驾驶VLA人才市场需求 - VLA/VLM大模型算法专家岗位薪资达40-70K,要求3-5年经验、硕士学历 [14] - 模型量化部署工程师薪资40-60K,要求1-3年经验、本科学历 [14] - 多模态VLA大模型方向顶尖技术人才薪资达90-120K,面向在校/应届博士 [14] - VLM实习生日薪220-400元,要求硕士学历 [14] 课程技术深度与实战项目 - 详细讲解BEV感知、目标检测、在线地图、OCC、轨迹预测等视觉感知技术 [21][32] - 涵盖Transformer基础、VL统一技术、判别式与生成式解码器等核心算法 [21] - 实战项目包括华科与小米的ReCogDrive和清华与博世的Impromptu VLA [22][23][33][35] - 大作业要求学员基于ms-swift框架搭建自己的VLA模型,完成数据准备、模型训练和微调全流程 [23][37]
自动驾驶VLA发展到哪个阶段了?现在还适合搞研究吗?
自动驾驶之心· 2025-09-22 08:04
智能驾驶技术演进 - 行业正经历从规则驱动向数据驱动的根本转变 端到端方法虽能打通上下游视角 但在复杂困难场景中仍受限 [1] - 视觉语言动作模型成为新焦点 其本质是一种更直白干净的端到端架构 取消了复杂的3D感知任务 借鉴视觉语言模型的通用泛化能力 提供解决极端案例的可能性 [1] 技术发展现状 - 自动驾驶视觉语言动作模型技术栈尚未收敛 多种算法如雨后春笋般涌现 包括模块化架构和一体化架构等不同范式 [2] - 行业面临技术栈多样化带来的入门困难 论文数量繁多且知识碎片化 缺乏高质量文档和系统实战指导 从理论到实践的过渡存在挑战 [2] 课程体系设计 - 课程采用即时学习理念 通过通俗易懂的语言和案例帮助学员快速掌握核心技术栈 [3] - 构建领域框架提升研究能力 帮助学员梳理研究发展脉络 掌握核心框架 学会论文分类和创新点提取 [4] - 理论结合实践完成闭环学习 配备实战环节实现从理论到实践的完整过渡 [5] 课程内容架构 - 第一章概述视觉语言动作模型算法概念及发展历史 详细介绍开源基准测试和常见评测指标 [14][15] - 第二章聚焦视觉 语言 动作三大模块的基础知识 并扩展大模型部署使用内容 以Qwen 2.5VL-72为例讲解本地部署 [16][17] - 第三章讲解作为自动驾驶解释器的视觉语言模型经典算法 包括DriveGPT4 TS-VLM DynRsl-VLM SENNA等 重点分析算法动机和网络结构 [18][19] - 第四章深入模块化与一体化视觉语言动作模型 涵盖BEV感知 动静态检测 占用网络 轨迹预测 序列建模 模态对齐 动作解码器 RAG 思维链 监督微调 强化学习 混合专家模型等技术要点 [20][21] - 第五章专注推理增强视觉语言动作模型子领域 讲解思维链 记忆体 工具调用等推理模块 分析长时序规划和因果解释能力 [23][24] - 第六章设置大作业实践 基于ms-swift框架开展自定义数据集训练和模型微调 提供可修改优化的演示代码 [26] 实战案例配置 - 选用华科与小米最新提出的ReCogDrive作为第四章实战案例 包含预训练 模仿学习训练和强化学习训练三阶段 涵盖GRPO和扩散模型轨迹输出等技术栈 [22] - 选用清华AIR与博世提出的Impromptu VLA作为第五章实战案例 基于开源Qwen2.5 VL进行数据集制作 训练和推理 [24] 师资与学术资源 - 教学团队来自清华大学和QS30高校 在ICCV IROS EMNLP等顶级会议发表多篇论文 具备多模态大模型与自动驾驶研发经验 [27] - 课程覆盖多项前沿研究成果 包括慕尼黑工大OpenDriveVLA 上海交大DriveMoE 博世DiffVLA UC Berkeley S4-Driver 华科ORION 阿里FutureSightDrive UCLA AutoVLA 中科院Drive-R1等 [29][30] 教学安排要求 - 课程于10月20日开课 预计两个半月完成 采用离线视频教学配合VIP群答疑和三次线上答疑 [32] - 学员需自备4090及以上算力GPU 具备自动驾驶基础 Transformer大模型 强化学习 BEV感知等技术背景 熟悉Python和PyTorch开发语言 [31]
扩散模如何重塑自动驾驶轨迹规划?
自动驾驶之心· 2025-09-11 23:33
扩散模型技术原理 - 扩散模型是一种生成式模型 本质是通过去噪过程学习数据分布 噪声符合特定分布 [1] - 原理基于正向扩散和反向生成两个过程 模拟墨水在清水中扩散和恢复的物理过程 [2] - 通过神经网络学习分布规律 从纯噪声中恢复原始数据 [2] - 自2020年提出后已获得超过2万次学术引用 [2] 自动驾驶领域应用 - 应用于数据生成 场景预测 感知增强和路径规划等多个自动驾驶关键环节 [11] - 可处理连续分布噪声和离散分布噪声 适用于决策规划等离散问题 [11] - 在端到端和VLA(Vision-Language-Action)架构中发挥重要作用 [11] - 扩散模型在多模轨迹预测中应用广泛 能更好适应自动驾驶环境的不确定性 [28] 端到端自动驾驶课程体系 - 课程涵盖端到端自动驾驶发展历史 技术范式演变及业界动态 [22] - 重点技术栈包括多模态大模型 BEV感知 强化学习 视觉Transformer和扩散模型 [15][29] - 第二章聚焦背景知识 包含视觉Transformer BEV感知 扩散模型理论和VLM强化学习等核心内容 [29] - 课程设置四大核心章节:端到端算法介绍 背景知识 二段式端到端 一段式端到端与VLA [22][23][24] 技术模块深度解析 - 一段式端到端包含基于感知(UniAD/VAD/PARA-Drive) 世界模型(Drive-OccWorld/OccLLaMA) 扩散模型(DiffusionDrive/Diffusion Planner/DiffE2E)和VLA四大方向 [24][26][28] - 世界模型技术可应用于场景生成 端到端控制和闭环仿真 是近年热门研究方向 [26] - VLA架构融合视觉大语言模型 BEV 扩散模型和强化学习 代表端到端自动驾驶最高技术形态 [31] - 课程配备Diffusion Planner和ORION(小米VLA系统)两大实战项目 [28][31] 课程特色与收益 - 采用Just-in-Time Learning理念 通过案例教学快速掌握核心技术栈 [17] - 帮助构建领域知识框架 提升论文分类和创新点提取能力 [18] - 通过RLHF微调大作业实现理论到实践的完整闭环 [33] - 学员需具备4090及以上GPU算力 及Python/PyTorch 概率论 线性代数基础 [38] - 完成课程可达到1年左右端到端算法工程师水平 掌握主流算法框架并具备项目应用能力 [38][39]