Workflow
量化分析
icon
搜索文档
择时雷达六面图:本周技术面好转,拥挤度弱化,综合打分不变
国盛证券· 2025-12-14 06:32
量化模型与构建方式 1. **模型名称:择时雷达六面图综合择时模型**[1][6] * **模型构建思路**:权益市场表现受多维度因素影响,该模型从流动性、经济面、估值面、资金面、技术面、拥挤度六个维度选取二十一个指标刻画市场,并将其概括为“估值性价比”、“宏观基本面”、“资金&趋势”、“拥挤度&反转”四大类,最终生成一个综合择时分数[1][6]。 * **模型具体构建过程**: 1. 构建六个维度的子分数:每个维度包含若干具体指标,每个指标根据其构建规则生成一个介于-1(看空)到1(看多)之间的信号分数[1][9]。 2. 汇总维度分数:将每个维度内所有指标的分数进行汇总(具体汇总方式如等权平均或加权平均,报告未明确说明),得到该维度的综合得分,范围同样在[-1, 1]之间[1][9]。 3. 生成综合择时分数:将六个维度的分数(或四大类的分数)进一步综合,最终生成一个位于[-1, 1]之间的综合择时分数,用以判断市场整体观点[1][6]。 量化因子与构建方式 1. **因子名称:货币方向因子**[11] * **因子构建思路**:判断当前货币政策的方向,通过比较当前利率与历史利率的变化来确定宽松或收紧[11]。 * **因子具体构建过程**:选取央行货币政策工具利率与短端市场利率,计算其相较于90天前的平均变化方向。若因子值>0,则判断货币政策宽松;若因子值<0,则判断货币政策收紧[11]。 2. **因子名称:货币强度因子**[14] * **因子构建思路**:表征短端市场利率相对于政策利率的偏离幅度,基于“利率走廊”概念构建[14]。 * **因子具体构建过程**:计算偏离度 = DR007 / 7天逆回购利率 - 1,并对该偏离度进行平滑与z-score标准化,形成货币强度因子。若因子值 < -1.5倍标准差,则预期未来120个交易日为宽松环境;若因子值 > 1.5倍标准差,则预期未来120个交易日为收紧环境[14]。 3. **因子名称:信用方向因子**[17] * **因子构建思路**:表征商业银行对实体经济的信贷松紧程度,使用中长期贷款指标进行体现[17]。 * **因子具体构建过程**:计算中长期贷款当月值 -> 计算过去十二个月增量 -> 计算同比,得到信用方向因子。若该因子值相比于三个月之前上升则看多;反之则看空[17]。 4. **因子名称:信用强度因子**[20] * **因子构建思路**:捕捉信用指标是否大幅超预期或不及预期[20]。 * **因子具体构建过程**:构建信用强度因子 = (新增人民币贷款当月值 – 预期中位数) / 预期标准差。若因子值 > 1.5倍标准差,则定义未来60个交易日为信用显著超预期环境;若因子值 < -1.5倍标准差,则未来60个交易日为信用显著不及预期环境[20]。 5. **因子名称:增长方向因子**[22] * **因子构建思路**:基于PMI数据判断经济增长的方向[22]。 * **因子具体构建过程**:基于中采制造业PMI、中采非制造业PMI、财新制造业PMI,构建增长方向因子 = PMI -> 计算过去十二月均值 -> 计算同比。若该因子值相比于三个月之前上升则看多;反之则看空[22]。 6. **因子名称:增长强度因子**[25] * **因子构建思路**:捕捉经济增长指标是否大幅超预期或不及预期[25]。 * **因子具体构建过程**:计算PMI预期差 = (PMI – 预期中位数) / 预期标准差,得到增长强度因子。若因子值 > 1.5倍标准差,则定义未来60个交易日为增长显著超预期环境;若因子值 < -1.5倍标准差,则未来60个交易日为增长显著不及预期环境[25]。 7. **因子名称:通胀方向因子**[27] * **因子构建思路**:判断通胀水平的变化方向,通胀下行可能为未来货币宽松提供空间,利好权益资产[27]。 * **因子具体构建过程**:计算通胀方向因子 = 0.5 × CPI同比平滑值 + 0.5 × PPI同比原始值。若该因子值相较于三个月之前降低,则看多;反之看空[27]。 8. **因子名称:通胀强度因子**[29] * **因子构建思路**:捕捉通胀指标是否大幅超预期或不及预期[29]。 * **因子具体构建过程**:分别计算CPI与PPI的预期差 = (披露值 – 预期中位数) / 预期标准差,并计算通胀强度因子 = CPI与PPI预期差的均值。若因子值 < -1.5倍标准差,则定义未来60个交易日为通胀显著不及预期环境;若因子值 > 1.5倍标准差,则未来60个交易日为通胀显著超预期环境[29]。 9. **因子名称:席勒ERP**[30] * **因子构建思路**:使用经过周期平滑的盈利计算市盈率,再与无风险利率比较,得到股权风险溢价,以更稳定地衡量估值水平[30]。 * **因子具体构建过程**:计算过去6年通胀调整后的平均盈利,得到席勒PE。再计算席勒ERP = 1 / 席勒PE - 10年期国债到期收益率。最后计算该ERP过去6年的z-score作为分数[30]。 10. **因子名称:PB**[34] * **因子构建思路**:使用市净率的倒数并标准化,来衡量估值水平[34]。 * **因子具体构建过程**:将PB乘以(-1),并计算过去6年的z-score,再用1.5倍标准差进行截尾后,标准化到±1之间得到分数[34]。 11. **因子名称:AIAE (全市场权益配置比例)**[36] * **因子构建思路**:反映市场整体的风险偏好,逻辑是投资者会根据风险资产和安全资产的供应量动态调整两者价格以达到市场均衡[36]。 * **因子具体构建过程**:构建A股的AIAE指标 = 中证全指总流通市值 / (中证全指总流通市值 + 实体总债务)。将该指标乘以(-1)并计算过去6年的z-score得到分数[36]。 12. **因子名称:两融增量**[38] * **因子构建思路**:两融余额变化反映市场杠杆资金情绪,上行时市场情绪较好[38]。 * **因子具体构建过程**:计算融资余额-融券余额,并计算其过去120日均增量与过去240日均增量。若120日均增量 > 240日均增量,则看多;反之看空[38]。 13. **因子名称:成交额趋势**[41] * **因子构建思路**:成交额上行代表市场成交热度与资金活跃度高[41]。 * **因子具体构建过程**:对对数成交额计算其均线距离 = ma120 / ma240 - 1。当均线距离的max(10日) = max(30日) = max(60日)时看多;当均线距离的min(10日) = min(30日) = min(60日)时看空[41]。 14. **因子名称:中国主权CDS利差**[45] * **因子构建思路**:该利差代表海外投资者对中国主权信用风险的定价,与外资流入意愿相关[45]。 * **因子具体构建过程**:对平滑后的CDS利差计算20日差分。若差分 < 0,说明利差下降,海外投资者预期中国基本面转好,此时看多;反之看空[45]。 15. **因子名称:海外风险厌恶指数 (花旗RAI指数)**[47] * **因子构建思路**:该指数由海外期权隐波、信用利差等数据组成,能捕捉海外市场的风险偏好[47]。 * **因子具体构建过程**:对平滑后的风险厌恶指数计算20日差分。若差分 < 0,说明外资风险偏好上升,此时看多;反之看空[47]。 16. **因子名称:价格趋势**[49] * **因子构建思路**:使用均线距离衡量标的价格的中长期趋势与强度[49]。 * **因子具体构建过程**: 1. 计算均线距离 = ma120 / ma240 - 1。 2. **趋势方向分数**:当均线距离 > 0时为1,反之为-1。 3. **趋势强度分数**:当均线距离的max(20日) = max(60日)时为1;当min(20日) = min(60日)时为-1。 4. **趋势综合分数** = (趋势方向分数 + 趋势强度分数) / 2[49]。 17. **因子名称:新高新低数**[51] * **因子构建思路**:指数成分股的新高与新低个数可以作为市场反转信号[51]。 * **因子具体构建过程**:计算中证800成分股(过去一年新低数 - 新高数)的20日移动平均。若该值 > 0,说明近期新低较多,市场有见底预期,此时看多;反之看空[51]。 18. **因子名称:期权隐含升贴水**[55] * **因子构建思路**:基于看涨看跌平价关系推导出期权隐含的标的升贴水,反映期权市场对未来标的收益率的预期与情绪,作为反转指标[55]。 * **因子具体构建过程**:若50ETF近5日收益率 < 0,且该指标分位数 < 30%,则看多持续20日。若50ETF近5日收益率 > 0,且该指标分位数 > 70%,则看空持续20日[55]。 19. **因子名称:期权隐含波动率VIX**[57] * **因子构建思路**:反映期权投资者对未来标的波动率的预期与市场情绪,较高时市场倾向于反转[57]。 * **因子具体构建过程**:若50ETF近5日收益率 < 0,且该指标分位数 > 70%,则看多持续20日。若50ETF近5日收益率 > 0,且该指标分位数 > 70%,则看空持续20日[57]。 20. **因子名称:期权隐含偏度SKEW**[62] * **因子构建思路**:反映期权投资者对未来标的偏度的预期与市场情绪,用作反转指标[62]。 * **因子具体构建过程**:若50ETF近5日收益率 < 0,且该指标分位数 > 70%,则看多持续20日。若50ETF近5日收益率 > 0,且该指标分位数 < 30%,则看空持续20日[62]。 21. **因子名称:可转债定价偏离度**[65] * **因子构建思路**:可转债估值水平能体现市场情绪,可用作反转指标[65]。 * **因子具体构建过程**:计算可转债定价偏离度 = 转债价格 / 模型定价 - 1。计算分数 = 定价偏离度 × (-1) 并计算过去3年的z-score。定价偏离度越高,拥挤度越高,分数越低[65]。 模型的回测效果 * **择时雷达六面图综合择时模型**,当前综合打分为0.08分[1][6][9],流动性维度得分为0.25分[1][9],经济面维度得分为-0.50分[1][9],估值面维度得分为-0.35分[2][9],资金面维度得分为0.50分[2][9],技术面维度得分为1.00分[2][9],拥挤度维度得分为0.00分[2][9] 因子的回测效果 * **货币方向因子**,当前分数为1分[11] * **货币强度因子**,当前分数为0分[14] * **信用方向因子**,当前分数为1分[17] * **信用强度因子**,当前分数为-1分[20] * **增长方向因子**,当前分数为1分[22] * **增长强度因子**,当前分数为-1分[25] * **通胀方向因子**,当前分数为-1分[27] * **通胀强度因子**,当前分数为-1分[29] * **席勒ERP**,当前分数为0.06分[30] * **PB**,当前分数为-0.38分[34] * **AIAE**,当前分数为-0.72分[36] * **两融增量**,当前分数为1分[38] * **成交额趋势**,当前分数为1分[41][42] * **中国主权CDS利差**,当前分数为-1分[45] * **海外风险厌恶指数**,当前分数为1分[47] * **价格趋势**,当前综合分数为1分[49] * **新高新低数**,当前分数为1分[51][52] * **期权隐含升贴水**,当前分数为-1分[55][56] * **期权隐含波动率VIX**,当前分数为1分[57][58] * **期权隐含偏度SKEW**,当前分数为1分[62][63] * **可转债定价偏离度**,当前分数为-1分[65]
量化周报:当下的反弹大概率仍只是30分钟级别反弹-20251207
国盛证券· 2025-12-07 10:31
量化模型与构建方式 1. **模型名称:A股景气指数模型**[30] * **模型构建思路**:以上证指数归母净利润同比为Nowcasting目标,构建一个反映A股景气度的高频指数,用于观测和预测经济景气周期[30]。 * **模型具体构建过程**:报告未提供该模型的具体构建公式和详细步骤,仅说明其构建目标和方法。详细构建过程需参考其提及的关联报告《视角透析:A股景气度高频指数构建与观察》[30]。 2. **模型名称:A股情绪指数模型**[34] * **模型构建思路**:基于市场波动率和成交额的变化方向来刻画市场情绪,通过构建“波动-成交情绪时钟”来划分市场状态,并据此生成见底和见顶预警信号[34]。 * **模型具体构建过程**:报告未提供该模型的具体构建公式和详细步骤。其核心逻辑是将市场状态根据波动率(上/下)和成交额(上/下)划分为四个象限,并统计各象限的历史收益特征,以此作为情绪判断和择时的依据[34]。详细构建过程需参考其提及的关联报告《视角透析:A股情绪指数构建与观察》[34]。 3. **模型名称:主题挖掘算法模型**[48] * **模型构建思路**:通过处理新闻和研报文本,提取主题关键词、挖掘主题与个股关系、构建主题活跃周期和影响力因子等多个维度,来识别和描述主题投资机会[48]。 * **模型具体构建过程**:报告未提供该算法的具体构建公式和详细步骤,仅概述了其包含的多个处理维度[48]。 4. **模型名称:中证500指数增强模型**[48] * **模型构建思路**:通过量化策略模型构建投资组合,旨在持续稳定地跑赢中证500指数基准[48]。 * **模型具体构建过程**:报告未披露该增强模型的具体因子构成、权重配置及组合优化公式,仅展示了其持仓明细和业绩表现[48][50]。 5. **模型名称:沪深300指数增强模型**[55] * **模型构建思路**:通过量化策略模型构建投资组合,旨在持续稳定地跑赢沪深300指数基准[55]。 * **模型具体构建过程**:报告未披露该增强模型的具体因子构成、权重配置及组合优化公式,仅展示了其持仓明细和业绩表现[55][56]。 6. **模型/因子框架名称:BARRA风格因子模型**[60] * **模型构建思路**:参照BARRA因子模型框架,为A股市场构建一套系统的风格因子体系,用于描述股票收益的风险来源,并进行组合绩效归因分析[60][68]。 * **模型具体构建过程**:报告列出了所构建的十大类风格因子名称,包括:市值(SIZE)、BETA、动量(MOM)、残差波动率(RESVOL)、非线性市值(NLSIZE)、估值(BTOP)、流动性(LIQUIDITY)、盈利(EARNINGS_YIELD)、成长(GROWTH)和杠杆(LVRG)[60]。但未提供每个因子的具体计算公式。 量化因子与构建方式 1. **因子名称:市值因子 (SIZE)**[60] * **因子构建思路**:衡量公司规模大小的风格因子。 * **因子具体构建过程**:报告未提供具体计算公式。 2. **因子名称:BETA因子**[60] * **因子构建思路**:衡量股票相对于市场整体波动性的风格因子。 * **因子具体构建过程**:报告未提供具体计算公式。 3. **因子名称:动量因子 (MOM)**[60] * **因子构建思路**:衡量股票价格趋势延续性的风格因子。 * **因子具体构建过程**:报告未提供具体计算公式。 4. **因子名称:残差波动率因子 (RESVOL)**[60] * **因子构建思路**:衡量股票特异性风险(剔除市场风险后的波动)的风格因子。 * **因子具体构建过程**:报告未提供具体计算公式。 5. **因子名称:非线性市值因子 (NLSIZE)**[60] * **因子构建思路**:捕捉市值因子非线性效应的风格因子。 * **因子具体构建过程**:报告未提供具体计算公式。 6. **因子名称:估值因子 (BTOP, Book-to-Price)**[60] * **因子构建思路**:衡量股票估值水平的风格因子,通常为账面市值比。 * **因子具体构建过程**:报告未提供具体计算公式。 7. **因子名称:流动性因子 (LIQUIDITY)**[60] * **因子构建思路**:衡量股票交易活跃度与变现难易程度的风格因子。 * **因子具体构建过程**:报告未提供具体计算公式。 8. **因子名称:盈利因子 (EARNINGS_YIELD)**[60] * **因子构建思路**:衡量公司盈利能力的风格因子。 * **因子具体构建过程**:报告未提供具体计算公式。 * **因子评价**:报告指出,从近期因子表现来看,高盈利股表现优异[2][61]。 9. **因子名称:成长因子 (GROWTH)**[60] * **因子构建思路**:衡量公司成长能力的风格因子。 * **因子具体构建过程**:报告未提供具体计算公式。 10. **因子名称:杠杆因子 (LVRG)**[60] * **因子构建思路**:衡量公司财务杠杆水平的风格因子。 * **因子具体构建过程**:报告未提供具体计算公式。 * **因子评价**:报告指出,从近期因子表现来看,杠杆等因子表现不佳[2][61]。 模型的回测效果 1. **中证500增强模型**,本周收益0.60%,跑输基准0.34%[48]。2020年至今,累计超额收益49.21%,最大回撤-5.73%[48]。 2. **沪深300增强模型**,本周收益1.40%,跑赢基准0.12%[55]。2020年至今,累计超额收益38.20%,最大回撤-5.86%[55]。 3. **A股情绪指数系统择时模型**,报告通过图表展示了其择时表现,但未给出具体的绩效指标数值[45]。 因子的回测效果 *注:报告未提供单个因子长期回测的绩效指标(如IC、IR、多空收益等)。仅提供了近期(近一周)的风格因子纯因子收益率和相关性数据。* 1. **风格因子暴露相关性**:报告以矩阵形式展示了近一周十大类风格因子风险暴露之间的相关系数[62]。例如,流动性因子与Beta、动量、残差波动率呈现明显正相关性;价值因子与Beta、残差波动率、流动性等因子呈现明显负相关性[61][62]。 2. **风格因子纯因子收益率**:报告指出,近一周风格因子中,**盈利因子超额收益较高**,**残差波动率因子呈较为显著的负向超额收益**[2][61]。具体数值通过图表展示但未在文本中列出[70]。 3. **行业因子纯因子收益率**:报告指出,近一周有色金属、国防军工、通信等行业因子相对市场市值加权组合跑出较高超额收益,银行、传媒等行业因子回撤较多[2][61]。具体数值通过图表展示但未在文本中列出[65]。
牛市中四成个股为何掉队
搜狐财经· 2025-12-06 16:47
市场现象与投资者行为 - 2025年前11个月跑赢指数的个股仅占62%,意味着有38%的个股掉队,但许多散户投资者仍存在“牛市所有调整都是机会”的幻觉 [2] - 投资者行为存在“代表性偏差”,容易将短期走势误判为长期趋势,例如11月14日半导体板块早盘反弹吸引散户加仓,但尾盘出现跳水 [2] - 在表面下跌行情中,可能存在机构资金的逆向操作,例如华兰疫苗在去年10月六连阴期间,机构资金净流入反而创下季度新高 [4] 资金动向与市场结构 - 当前市场存在将“流动性宽松”等同于“所有股票都会涨”的危险认知误区 [6] - 过去五年跨年行情中,获得险资增持的个股平均跑赢大盘17个百分点,但普通投资者难以追踪此类资金的真实动向 [7] - 市场信息不对称已从“有没有信息”升级为“会不会使用信息”,量化工具能揭示散户视角无法看到的资金轨迹 [10] 投资策略与认知 - 成功的投资者具备三大特质:对政策拐点敏锐、对资金流向把握精准、对自身认知局限认识深刻 [13] - 在政策市环境中,比拼的是对“政策落差”的预判能力,这让人联想到2018年资管新规出台前的仓位调整 [6] - 真正的市场语言由真金白银堆砌的量化数据构成,研究这些数据比在股吧捕风捉影更为有效 [12]
择时雷达六面图:本周估值面分数略下降
国盛证券· 2025-11-30 05:14
量化模型与构建方式 1. **模型名称:择时雷达六面图模型**[1][6] * **模型构建思路**:该模型旨在构建一个综合性的市场择时框架,认为权益市场表现受多维度因素共同影响。模型从流动性、经济面、估值面、资金面、技术面、拥挤度六个维度选取二十一个指标刻画市场,并将其概括为"估值性价比"、"宏观基本面"、"资金&趋势"、"拥挤度&反转"四大类,最终生成一个介于[-1,1]之间的综合择时分数。[1][6] * **模型具体构建过程**: * **步骤一:指标选取与分类**。从六个维度(流动性、经济面、估值面、资金面、技术面、拥挤度)选取二十一个具体指标。[1][6] * **步骤二:单指标信号生成**。每个指标根据其特定的构建逻辑和规则,被转化为一个看多(+1)、看空(-1)或中性(0)的信号。[9] * **步骤三:维度分数计算**。每个维度(如流动性)下各指标的打分进行平均或综合,得到该维度的综合分数,范围在[-1,1]之间。[8] * **步骤四:大类分数计算**。将六个维度的分数归类到四大类("估值性价比"、"宏观基本面"、"资金&趋势"、"拥挤度&反转"),并进行综合。[1][6] * **步骤五:综合择时分数生成**。基于四大类的分数,最终生成一个[-1,1]之间的综合择时分数。[1][6] 量化因子与构建方式 1. **因子名称:货币方向因子**[11] * **因子构建思路**:判断当前货币政策的方向,通过比较货币政策工具利率与短端市场利率相对于历史时期的变化来确定宽松或收紧。[11] * **因子具体构建过程**:选取央行使用的货币政策工具利率与短端市场利率,计算其相较于90天前的平均变化方向。若货币方向因子>0,则判断货币政策宽松(看多信号,分数为1);若货币方向因子<0,则判断货币政策收紧(看空信号,分数为-1)。[11] 2. **因子名称:货币强度因子**[13] * **因子构建思路**:表征短端市场利率相对于政策利率的偏离幅度,基于"利率走廊"概念,用于预期未来的货币环境。[13] * **因子具体构建过程**:计算偏离度=DR007/7天逆回购利率-1,并对该偏离度进行平滑与Z-Score标准化,得到货币强度因子。若货币强度因子<-1.5倍标准差,则预期未来120个交易日为宽松环境(分数为1);若货币强度因子>1.5倍标准差,则预期未来120个交易日为收紧环境(分数为-1)。[13] 3. **因子名称:信用方向因子**[16] * **因子构建思路**:表征商业银行对实体经济传导信用的松紧程度,使用中长期贷款指标进行体现。[16] * **因子具体构建过程**:计算信用方向因子为:中长期贷款当月值 -> 计算过去十二个月增量 -> 计算同比。若信用方向因子相比于三个月之前上升则看多(分数为1);反之则看空(分数为-1)。[16] 4. **因子名称:信用强度因子**[19] * **因子构建思路**:捕捉信用指标是否大幅超预期或不及预期,反映信用的强度变化。[19] * **因子具体构建过程**:构建信用强度因子=(新增人民币贷款当月值–预期中位数)/预期标准差。若信用强度因子>1.5倍标准差,则定义未来60个交易日为信用显著超预期环境(分数为1);反之若信用强度因子<-1.5倍标准差,则未来60个交易日分数为-1。[19] 5. **因子名称:增长方向因子**[22] * **因子构建思路**:基于PMI数据判断经济增长的方向变化。[22] * **因子具体构建过程**:基于中采制造业PMI、中采非制造业PMI、财新制造业PMI构建增长方向因子= PMI -> 计算过去十二月均值 -> 计算同比。若增长方向因子相比于三个月之前上升则看多(分数为1);反之则看空(分数为-1)。[22] 6. **因子名称:增长强度因子**[25] * **因子构建思路**:捕捉经济增长指标是否大幅超预期或不及预期。[25] * **因子具体构建过程**:计算PMI预期差=(PMI–预期中位数)/预期标准差。若增长强度因子(即PMI预期差)>1.5倍标准差,则定义未来60个交易日为增长显著超预期环境(分数为1);反之若增长强度因子<-1.5倍标准差,则未来60个交易日分数为-1。[25] 7. **因子名称:通胀方向因子**[27] * **因子构建思路**:判断通胀水平的变化方向,通胀下行通常意味着未来货币政策宽松空间较大,利好权益。[27] * **因子具体构建过程**:计算通胀方向因子=0.5×CPI同比平滑值+0.5×PPI同比原始值。若通胀方向因子相较于三个月之前降低,则说明是通胀下行环境,此时看多(分数为1);反之看空(分数为-1)。[27] 8. **因子名称:通胀强度因子**[28] * **因子构建思路**:捕捉通胀指标是否大幅超预期或不及预期。[28] * **因子具体构建过程**:分别计算CPI与PPI预期差=(披露值–预期中位数)/预期标准差,并计算通胀强度因子=CPI与PPI预期差均值。若通胀强度因子<-1.5倍标准差,则定义未来60个交易日为通胀显著不及预期环境(分数为1);反之若通胀强度因子>1.5倍标准差,则未来60个交易日分数为-1。[28] 9. **因子名称:席勒ERP**[32] * **因子构建思路**:使用经过周期调整的盈利来计算市盈率,进而得到股权风险溢价,以更稳定地衡量估值水平。[32] * **因子具体构建过程**:计算过去6年通胀调整后的平均盈利得到席勒PE,然后计算席勒ERP=1/席勒PE-10年期国债到期收益率,并对该席勒ERP计算过去6年的Z-Score作为分数。[32] 10. **因子名称:PB**[35] * **因子构建思路**:使用市净率的倒数并标准化来衡量估值,值越高代表估值越低,性价比越高。[35] * **因子具体构建过程**:对PB指标取负数(即-PB),然后计算过去6年的Z-Score,再经过1.5倍标准差截尾后标准化到±1之间得到分数。[35] 11. **因子名称:AIAE**[38] * **因子构建思路**:计算全市场权益配置比例,反映市场整体的风险偏好,基于风险资产和安全资产的相对供应量均衡逻辑。[38] * **因子具体构建过程**:构建A股的AIAE指标=中证全指总流通市值/(中证全指总流通市值 +实体总债务)。将AIAE取负数(即-AIAE)并计算过去6年的Z-Score得到分数。[38] 12. **因子名称:两融增量**[41] * **因子构建思路**:通过融资融券余额的增量变化判断市场杠杆资金情绪。[41] * **因子具体构建过程**:计算融资余额-融券余额,并计算其过去120日均增量与过去240日均增量。若120日均增量>过去240日均增量,则判断杠杆资金上行(看多,分数为1);反之看空(分数为-1)。[41] 13. **因子名称:成交额趋势**[44] * **因子构建思路**:通过成交额的均线趋势判断市场成交热度和资金活跃度。[44] * **因子具体构建过程**:对对数成交额计算其均线距离=MA120/MA240-1。当均线距离的max(10日)=max(30日)=max(60日)时看多(分数为1);当均线距离的min(10日)=min(30日)=min(60日)时看空(分数为-1)。[44] 14. **因子名称:中国主权CDS利差**[47] * **因子构建思路**:利用中国主权CDS利差反映海外投资者对中国经济和主权信用风险的定价,间接体现外资流入意愿。[47] * **因子具体构建过程**:对平滑后的CDS利差计算其20日差分。若20日差分<0,说明CDS利差下降,海外投资者预期中国基本面转好(看多,分数为1);反之看空(分数为-1)。[47][48] 15. **因子名称:海外风险厌恶指数**[50] * **因子构建思路**:使用花旗风险厌恶指数(Citi RAI Index)捕捉海外市场的整体风险偏好,影响外资流向。[50] * **因子具体构建过程**:对平滑后的风险厌恶指数计算其20日差分。若20日差分<0,说明外资风险偏好上升(看多,分数为1);反之看空(分数为-1)。[50] 16. **因子名称:价格趋势**[53] * **因子构建思路**:使用均线距离衡量标的价格的中长期趋势方向和强度。[53] * **因子具体构建过程**:计算价格均线距离=MA120/MA240-1。趋势方向分数:当均线距离>0时为1,反之为-1。趋势强度分数:当均线距离的max(20日)=max(60日)时为1,当min(20日)=min(60日)时为-1。趋势综合分数=(趋势方向分数+趋势强度分数)/2。[53] 17. **因子名称:新高新低数**[55] * **因子构建思路**:将指数成分股的新高与新低个数之差作为市场反转信号。[55] * **因子具体构建过程**:计算中证800成分股的(过去一年新低数-新高数)的20日移动平均(MA20)。若该MA20值>0,说明近期新低较多,市场有见底预期(看多,分数为1);反之发出看空信号(分数为-1)。[55][56] 18. **因子名称:期权隐含升贴水**[59] * **因子构建思路**:基于期权定价推导出的隐含升贴水反映期权市场对未来标的收益率的预期与情绪,作为反转指标衡量拥挤度。[59] * **因子具体构建过程**:若50ETF近5日收益率<0,且该指标分位数<30%,则看多持续20日(分数为1)。若50ETF近5日收益率>0,且指标分位数>70%,则看空持续20日(分数为-1)。[59] 19. **因子名称:期权隐含波动率VIX**[60] * **因子构建思路**:期权VIX指数反映投资者对未来波动率的预期与市场情绪,作为反转指标。[60] * **因子具体构建过程**:若50ETF近5日收益率<0,且该指标分位数>70%,则看多持续20日(分数为1)。若50ETF近5日收益率>0,且指标分位数>70%,则看空持续20日(分数为-1)。[60] 20. **因子名称:期权隐含偏度SKEW**[65] * **因子构建思路**:期权SKEW指数反映投资者对未来标的偏度的预期与市场情绪,用作反转指标。[65] * **因子具体构建过程**:若50ETF近5日收益率<0,且该指标分位数>70%,则看多持续20日(分数为1)。若50ETF近5日收益率>0,且指标分位数<30%,则看空持续20日(分数为-1)。[65] 21. **因子名称:可转债定价偏离度**[67] * **因子构建思路**:通过可转债价格相对于模型定价的偏离度来反映市场情绪和拥挤度,作为反转指标。[67] * **因子具体构建过程**:计算可转债定价偏离度=转债价格/模型定价-1。因子分数=定价偏离度×(-1)并计算过去3年Z-Score得到。定价偏离度越高,拥挤度越高,分数越低。[67] 模型的回测效果 (报告未提供择时雷达六面图模型的具体回测指标数值,如年化收益率、夏普比率等,故本部分省略) 因子的回测效果 (报告主要提供了各因子在当前时间点的信号分数,未提供因子历史表现的量化回测指标,如IC值、IR等,故本部分省略。各因子当前信号分数见因子构建部分或文档[9])
1200亿融资背后:散户为何总被甩下车?
搜狐财经· 2025-11-18 08:09
市场表现与投资者认知差异 - 市场存在牛市幻觉,指数创新高时实际个股上涨比例不足五成,显示市场广度不足[2] - 2025年关税摩擦后的反弹行情中,个股表现分化严重,多数投资者未能识别真正牛市[2] 机构资金行为与市场机会 - 机构资金持续活跃或突然撤离对个股价格产生显著影响,存在机构加仓但K线呈现下跌形态的震仓现象[3][7] - 当机构库存(橙色柱体)与空头回补信号(红色信号)同时出现时,往往形成黄金坑投资机会,某案例三个月内上涨70%[7][10] 聪明资金流向与投资工具 - 在利率下行周期,债券ETF成为资金避风港,富国中债ETF获2.56亿净买入[11] - 资金通过恒生科技ETF抢筹押注港股估值修复,显示机构对特定板块的布局逻辑[11] 有效市场分析方法 - 建议关注融资融券数据、大宗交易数据、龙虎榜数据等客观交易数据以理解大资金动向[11] - 强调研究真实交易行为的重要性,认为数据比消息更能反映市场真相[11]
三年上市路断?这家芯片公司暗藏玄机
搜狐财经· 2025-11-17 13:09
敏芯半导体公司动态 - 公司董秘亢娜在任职七年后转投同行中元股份 [1] - 公司的IPO进程从湖北证监局的辅导名单中消失 [1] - 公司作为国内首家全系列光芯片独立供应商,曾获得高瓴、中芯聚源等顶级机构投资 [3] - 中金公司的上市辅导报告已停止更新 [3] 半导体行业人才流动 - 核心高管的去向往往暗含深意,特别是在人才流动性极强的半导体行业 [9] - 亢娜转投的中元股份正在朱氏家族主导下向半导体领域转型 [11] - 分析行业人才流动的大趋势比单纯关注单个高管离职事件更具价值 [13] 市场行为与量化分析 - 股价反复震荡时,量化系统可捕捉到“空头回补”和“机构库存”等关键信号 [6] - 量化工具能将市场情绪量化为具体指标,例如在表面利空事件下,专业投资者的情绪指标可能出现回升 [11] - 通过行为数据分析可以洞察机构的真实操作意图,而非仅停留在K线形态表面 [13] - 市场对消息的反应方式比消息本身更为重要 [14] 投资策略观察 - 好股票需具备在震荡中保持韧性的能力,面临跟风盘增多和获利盘增厚两大挑战 [4] - 机构操作模式常包括先拉升吸引散户,再进行打压洗盘,最后开启主升浪 [4] - 在信息过载时代,投资者缺乏的是解读信息的工具而非消息本身 [11] - 建议关注资金在产业链上的流动轨迹,而非猜测单一事件如IPO能否重启 [13]
择时雷达六面图:本周资金面好转
国盛证券· 2025-11-16 08:46
根据提供的量化分析报告,以下是关于其中涉及的量化模型和因子的总结。 量化模型与构建方式 1. **模型名称:择时雷达六面图模型**[1][6] * **模型构建思路**:该模型是一个综合择时框架,认为权益市场表现受多维度指标共同影响。模型从流动性、经济面、估值面、资金面、技术面、拥挤度六个维度选取二十一个指标,并将其概括为“估值性价比”、“宏观基本面”、“资金&趋势”、“拥挤度&反转”四大类,最终生成一个介于[-1,1]之间的综合择时分数,用以判断市场整体观点[1][6]。 * **模型具体构建过程**:模型构建过程分为几个步骤。首先,从六个维度选取共计21个底层指标。其次,对每个底层指标根据其构建规则计算出一个初始的择时信号分数(通常为1,0,-1或经过标准化处理的值)。然后,将六个维度的分数进行综合(具体综合方法未在提供内容中详细说明,但结果是得到四大类分数和最终的综合分数)。最终,模型输出综合择时分数以及各维度的分数,分数区间为[-1,1],分数为正代表看多或中性偏多,为负代表看空或中性偏空,接近零代表中性[1][6][7][8]。 量化因子与构建方式 1. **因子名称:货币方向因子**[10] * **因子构建思路**:该因子旨在判断当前货币政策的方向,通过比较政策利率与市场利率相对于历史水平的变化来确定货币环境的宽松或收紧[10]。 * **因子具体构建过程**:选取央行使用的货币政策工具利率与短端市场利率,计算其相较于90天前的平均变化方向。若货币方向因子>0,则判断货币政策宽松;若<0,则判断货币政策收紧。在模型中,宽松对应看多信号(分数为1),收紧对应看空信号(分数为-1)[10]。 2. **因子名称:货币强度因子**[12] * **因子构建思路**:该因子基于“利率走廊”概念,通过衡量短端市场利率相对于政策利率的偏离幅度来表征货币政策的强度[12]。 * **因子具体构建过程**:计算偏离度 = DR007 / 7天逆回购利率 - 1。对该偏离度进行平滑处理并计算Z-Score,得到货币强度因子。若货币强度因子 < -1.5倍标准差,则预期未来120个交易日为宽松环境,指标分数为1;若 > 1.5倍标准差,则预期未来120个交易日指标分数为-1[12]。 3. **因子名称:信用方向因子**[15] * **因子构建思路**:该因子用于表征商业银行对实体经济信贷传导的松紧程度,使用中长期贷款指标的变化趋势来判断[15]。 * **因子具体构建过程**:计算中长期贷款当月值,然后计算过去十二个月的增量,再计算该增量的同比。若信用方向因子相比于三个月之前上升则看多,分数为1;反之则看空,分数为-1[15]。 4. **因子名称:信用强度因子**[18] * **因子构建思路**:该因子旨在捕捉信贷指标是否大幅超预期或不及预期,反映信用的强度[18]。 * **因子具体构建过程**:构建信用强度因子 = (新增人民币贷款当月值 – 预期中位数) / 预期标准差。若信用强度因子 > 1.5倍标准差,则定义未来60个交易日为信用显著超预期环境,分数为1;反之若 < -1.5倍标准差,则未来60个交易日分数为-1[18]。 5. **因子名称:增长方向因子**[20] * **因子构建思路**:该因子基于PMI数据构建,用于判断经济增长的方向[20]。 * **因子具体构建过程**:基于中采制造业PMI、中采非制造业PMI、财新制造业PMI数据,计算增长方向因子 = PMI -> 计算过去十二月均值 -> 计算同比。若增长方向因子相比于三个月之前上升则看多,分数为1;反之则看空,分数为-1[20]。 6. **因子名称:增长强度因子**[23] * **因子构建思路**:该因子用于捕捉经济增长指标是否大幅超预期或不及预期[23]。 * **因子具体构建过程**:计算PMI预期差 = (PMI – 预期中位数) / 预期标准差。若增长强度因子 > 1.5倍标准差,则定义未来60个交易日为增长显著超预期环境,分数为1;反之若 < -1.5倍标准差,则未来60个交易日分数为-1[23]。 7. **因子名称:通胀方向因子**[25] * **因子构建思路**:该因子通过当前通胀水平的变化来判断对未来货币政策空间的预期,进而影响权益资产[25]。 * **因子具体构建过程**:计算通胀方向因子 = 0.5 × CPI同比平滑值 + 0.5 × PPI同比原始值。若通胀方向因子相较于三个月之前降低,则说明是通胀下行环境,此时看多,分数为1;反之看空,分数为-1[25]。 8. **因子名称:通胀强度因子**[27] * **因子构建思路**:该因子用于捕捉通胀指标是否大幅超预期或不及预期[27]。 * **因子具体构建过程**:分别计算CPI与PPI的预期差 = (披露值 – 预期中位数) / 预期标准差,并计算通胀强度因子 = CPI与PPI预期差均值。若通胀强度因子 < -1.5,则定义未来60个交易日为通胀显著不及预期环境,分数为1;反之若 > 1.5倍标准差,则未来60个交易日分数为-1[27]。 9. **因子名称:席勒ERP**[28] * **因子构建思路**:该因子通过计算经周期调整的估值水平与无风险收益率的差值,来衡量权益资产的性价比[28]。 * **因子具体构建过程**:计算过去6年通胀调整后的平均盈利,得到席勒PE。然后计算席勒ERP = 1 / 席勒PE - 10年期国债到期收益率。最后,计算该ERP过去6年的Z-Score作为分数[28]。 10. **因子名称:PB**[31] * **因子构建思路**:该因子是传统的估值指标,通过市净率的相对历史位置来判断市场估值水平[31]。 * **因子具体构建过程**:对PB乘以-1,然后计算过去6年的Z-Score,再用1.5倍标准差进行截尾处理,最后标准化到±1之间得到分数[31]。 11. **因子名称:AIAE**[33] * **因子构建思路**:该因子全称为 Aggregate Investor Allocation to Equities(全市场权益配置比例),用于反映市场整体的风险偏好,基于投资者在风险资产和安全资产之间的配置均衡逻辑[33]。 * **因子具体构建过程**:构建A股的AIAE指标 = 中证全指总流通市值 / (中证全指总流通市值 + 实体总债务)。将AIAE乘以-1后,计算过去6年的Z-Score得到分数[33]。 12. **因子名称:两融增量**[36] * **因子构建思路**:该因子通过杠杆资金(融资融券)的增量变化来捕捉市场情绪[36]。 * **因子具体构建过程**:计算融资余额 - 融券余额,然后计算其过去120日的均增量与过去240日的均增量。若120日均增量 > 过去240日均增量,则判断杠杆资金上行,看多,分数为1;反之看空,分数为-1[36]。 13. **因子名称:成交额趋势**[39] * **因子构建思路**:该因子通过成交额的活跃度趋势来捕捉市场资金热度[39]。 * **因子具体构建过程**:对成交额取对数,然后计算其均线距离 = MA120 / MA240 - 1。当均线距离的max(10) = max(30) = max(60)时看多,分数为1;当均线距离的min(10) = min(30) = min(60)时看空,分数为-1[39]。 14. **因子名称:中国主权CDS利差**[43] * **因子构建思路**:该因子通过海外投资者对中国主权信用风险的定价变化来推断外资流入意愿[43]。 * **因子具体构建过程**:对中国主权CDS利差进行平滑处理,然后计算其20日差分。若20日差分 < 0,说明CDS利差下降,海外投资者预期中国基本面转好,此时看多,分数为1;反之看空,分数为-1[43]。 15. **因子名称:海外风险厌恶指数**[45] * **因子构建思路**:该因子使用花旗风险厌恶指数(Citi RAI Index)来捕捉海外市场的整体风险偏好,从而影响外资流向[45]。 * **因子具体构建过程**:对海外风险厌恶指数进行平滑处理,然后计算其20日差分。若20日差分 < 0,表明外资风险偏好上升,此时看多,分数为1;反之看空,分数为-1[45]。 16. **因子名称:价格趋势**[47] * **因子构建思路**:该因子结合价格趋势的方向和强度,通过均线系统来捕捉市场中长期动量[47]。 * **因子具体构建过程**:计算价格均线距离 = MA120 / MA240 - 1。趋势方向分数:若均线距离 > 0,则为1,反之为-1。趋势强度分数:若均线距离的max(20) = max(60),则为1;若min(20) = min(60),则为-1。趋势综合分数 = (趋势方向分数 + 趋势强度分数) / 2[47]。 17. **因子名称:新高新低数**[49] * **因子构建思路**:该因子作为市场反转信号,通过成分股创年内新高与新低的数量差来判断市场可能的顶部或底部[49]。 * **因子具体构建过程**:计算中证800成分股中,过去一年新低数 - 新高数,然后取20日移动平均(MA20)。若该MA20值 > 0,说明近期新低较多,市场有见底预期,此时看多,分数为1;反之发出看空信号,分数为-1[49][50]。 18. **因子名称:期权隐含升贴水**[53] * **因子构建思路**:该因子基于期权市场隐含的标的未来收益率预期,作为反转指标来衡量市场拥挤度[53]。 * **因子具体构建过程**:基于看涨看跌平价关系推导出期权的隐含升贴水。若50ETF近5日收益率 < 0,且该指标分位数 < 30%,则看多持续20日,分数为1。若50ETF近5日收益率 > 0,且指标分位数 > 70%,则看空持续20日,分数为-1[53]。 19. **因子名称:期权VIX指数**[54] * **因子构建思路**:该因子使用期权隐含波动率来反映市场对未来波动率的预期和情绪,作为反转指标[54]。 * **因子具体构建过程**:若50ETF近5日收益率 < 0,且VIX指数分位数 > 70%,则看多持续20日。若50ETF近5日收益率 > 0,且VIX指数分位数 > 70%,则看空持续20日[54][55]。 20. **因子名称:期权SKEW指数**[59] * **因子构建思路**:该因子使用期权隐含偏度来反映市场对未来价格分布偏度的预期和情绪,作为反转指标[59]。 * **因子具体构建过程**:若50ETF近5日收益率 < 0,且SKEW指数分位数 > 70%,则看多持续20日,分数为1。若50ETF近5日收益率 > 0,且SKEW指数分位数 < 30%,则看空持续20日,分数为-1[59][60]。 21. **因子名称:可转债定价偏离度**[63] * **因子构建思路**:该因子通过可转债的市场价格与其模型理论价格的偏离度来捕捉市场情绪和拥挤度,作为反转指标[63]。 * **因子具体构建过程**:计算可转债定价偏离度 = 转债价格 / 模型定价 - 1。然后计算因子分数 = 定价偏离度 × (-1),再计算过去3年的Z-Score得到最终分数。定价偏离度越高,拥挤度越高,分数越低[63]。 模型的回测效果 (报告中未提供择时雷达六面图模型的具体回测指标数值,如年化收益率、夏普比率、最大回撤等。) 因子的回测效果 (报告中未提供各个因子独立测试的具体IC值、IR、多空收益等量化指标数值。报告主要展示了各因子在特定时间点(本周)的信号分数和观点。)
量化数据揭秘:机构震仓与散户补仓的天壤之别
搜狐财经· 2025-11-11 07:23
市场表现与投资者结构 - 日韩股市表现强劲,特别是SK海力士、三星电子等芯片股表现突出 [1] - 日韩市场机构投资者占比超过70%,是成熟市场 [6] - A股市场上证指数从4月7日到10月30日上涨19.6%,但跑赢指数的个股不到四成,4200只上涨个股中有4000多只振幅超过30% [2] 市场动态与机构行为 - 个股反弹中,前三次反弹缺乏机构参与,第四次反弹出现密集的机构活动信号(橙色“机构库存”) [4][6] - 机构投资者运用大数据分析和量子计算等先进工具,与依赖传统技术分析的散户形成对比 [2][7] - 日韩股市上涨受美股带动和政策刺激,如韩国调降股息税刺激外资流入,日本企业治理改革成效显著 [7] 市场效率与投资策略 - 缺乏机构参与的反弹行情持续性存疑,市场波动揭示了结构性差异 [7] - 注册制深化和退市机制完善将加剧未来A股市场的个股分化 [7] - 量化系统数据显示,机构行为信号是判断市场机会质量的关键指标 [6][7]
如何阅读本号
猛兽派选股· 2025-11-11 03:20
公众号内容架构与核心资源 - 公众号为提升阅读效率 设置了清晰的导航布局 新关注者可快速获取核心知识 [1] - 通过私信对话框的菜单栏可直接访问核心公式等关键资源 [1] - 公众号首页设有四个主要合集 涵盖交易系统原理与量化公式、看图基础与图形模式、猛兽股特征研究、读书笔记与实战心法 [1] 精选文章与用户反馈 - 公众号置顶两篇精选文章 被视为号眼 第一篇阐述选股底层逻辑 第二篇讲解快速搜索趋势强股的方法 [4] - 部分用户对内容评价较高 存在反复研读甚至打印成册的学习行为 [4] - 文章获得用户互动 例如一篇阅读量达1804 获赞192 有1位朋友转发 另一篇阅读量2242 获赞125 有1位朋友赞赏 [2]
量化周报:银行确认日线级别上涨-20251109
国盛证券· 2025-11-09 13:30
根据提供的量化周报内容,以下是关于报告中涉及的量化模型和因子的总结。 量化模型与构建方式 1. **模型名称:A股景气指数模型**[32][33][35] * **模型构建思路**:该模型旨在对A股市场的景气度进行高频Nowcasting(即时预测),其核心目标是Nowcasting上证指数的归母净利润同比增速[32] * **模型具体构建过程**:模型的具体构建细节在报告《视角透析:A股景气度高频指数构建与观察》中。报告指出,该指数用于追踪景气下行周期的底部区域和上行趋势[32][33][35] 2. **模型名称:A股情绪指数模型**[37][38][43] * **模型构建思路**:该模型通过分析市场的波动率和成交额变化来刻画投资者情绪,并据此生成见底和见顶预警信号[37][38] * **模型具体构建过程**:模型将市场状态根据波动率和成交额的变化方向划分为四个象限。研究表明,只有在“波动率上行-成交额下行”的区间内市场表现为显著负收益,其余区间均为显著正收益。基于此规律,模型构建了包含见底预警与见顶预警的A股情绪指数系统。具体构建方法可参考报告《视角透析:A股情绪指数构建与观察》[37][38][43] 3. **模型名称:中证500指数增强模型**[48][51][53] * **模型构建思路**:通过量化策略模型构建投资组合,旨在持续跑赢中证500指数基准[48][51] * **模型具体构建过程**:报告未详细说明该增强模型的具体因子构成和权重配置方法,但展示了根据该模型产生的具体持仓列表[53] 4. **模型名称:沪深300指数增强模型**[56][57][60] * **模型构建思路**:通过量化策略模型构建投资组合,旨在持续跑赢沪深300指数基准[56][57] * **模型具体构建过程**:报告未详细说明该增强模型的具体因子构成和权重配置方法,但展示了根据该模型产生的具体持仓列表[60] 5. **模型名称:主题挖掘算法模型**[48] * **模型构建思路**:该模型通过分析新闻和研报文本,自动挖掘当前市场的热点主题投资机会[48] * **模型具体构建过程**:模型包含多个处理维度,包括文本处理、主题关键词提取、主题个股关系挖掘、主题活跃周期构建以及主题影响力因子构建等[48] 模型的回测效果 1. **中证500增强模型**,本周收益0.40%,本周超额收益0.45%,2020年至今超额收益52.65%,最大回撤-5.73%[48][51] 2. **沪深300增强模型**,本周收益0.84%,本周超额收益0.02%,2020年至今超额收益39.36%,最大回撤-5.86%[56][57] 3. **A股情绪指数系统择时模型**,报告通过图表展示了其历史择时表现,但未给出具体的量化指标数值[47] 量化因子与构建方式 1. **因子名称:风格因子体系**[61] * **因子构建思路**:参照BARRA因子模型框架,构建一套涵盖十大类风格的风险因子体系,用于解释股票收益和市场风格分析[61] * **因子具体构建过程**:报告指出构建的风格因子包括:市值(SIZE)、BETA、动量(MOM)、残差波动率(RESVOL)、非线性市值(NLSIZE)、估值(BTOP)、流动性(LIQUIDITY)、盈利(EARNINGS_YIELD)、成长(GROWTH)和杠杆(LVRG)。但未提供每个因子的具体计算公式[61] 因子的回测效果 1. **残差波动率因子**,近期纯因子收益表现优异[2][62] 2. **价值因子**,近期纯因子收益表现优异[2][62] 3. **动量因子**,近期纯因子收益呈较为显著的负向超额收益[2][62] 4. **市值因子**,近期表现不佳[2][62] 5. **非线性市值因子**,近期表现不佳[2][62] 对模型或因子的评价 * **A股景气指数**:评价认为当前景气指数正缓慢呈现出震荡上行趋势,本轮景气下行的底部区域已经出现[32][35] * **风格因子**:评价认为当前市场风格中,残差波动率因子占优,高价值股表现优异[2][62]