扩散模型

搜索文档
NVIDIA最新!GraspGen:基于扩散模型的六自由度抓取生成框架
具身智能之心· 2025-07-21 08:42
核心观点 - GraspGen是一个针对机器人6自由度抓取泛化能力不足问题提出的创新框架,通过将抓取生成建模为迭代扩散过程,结合DiffusionTransformer架构和高效判别器,显著提升了抓取生成能力和适应性 [2] - 该框架采用"生成器上训练"策略大幅提升判别器性能,并通过新发布的大规模模拟数据集(含5300万抓取)实现对不同物体和夹具的适配 [2][9] - 在模拟和真实机器人实验中,GraspGen全面超越基线方法,在单物体场景AUC超过基线48%,在clutter场景任务成功率超过Contact-GraspNet 16.9% [10][13] - 真实机器人实验中整体成功率81.3%,远超M2T2(28%)和AnyGrasp(17.6%),尤其在复杂场景优势明显 [19] 核心方法 - 扩散生成器:将6自由度抓取生成建模为SE(3)空间中的扩散过程,采用DDPM模型计算更快、实现更简单 [4] - 平移归一化:通过数据集统计计算归一化系数,避免人工设置或网格搜索的低效 [4] - 对象编码:采用PointTransformerV3作为骨干网络,相比PointNet++减少5.3mm平移误差,提升4%召回率 [4] - 扩散网络:通过10步去噪生成抓取(远少于图像扩散的数百步),训练损失为预测噪声与真实噪声的L2损失 [5] 判别器设计 - 高效评估:复用生成器的对象编码器,内存使用减少21倍 [7] - 生成器上训练:用生成器生成约7K物体×2K抓取/物体的数据集训练判别器,使其AUC达0.947,显著高于仅用离线数据的0.886 [7][16] 模拟数据集 - 覆盖范围:包含三种夹具(每种约1700万抓取)和36366个网格模型 [11] - 生成方式:每个物体采样2K抓取姿态,通过摇晃测试判断成功 [11] 实验结果 - 单物体场景:在ACRONYM数据集上精度-覆盖率曲线AUC超过基线48% [10] - clutter场景:在100个场景×60任务中,任务成功率和抓取成功率均为最优 [13] - 遮挡鲁棒性:混合训练使模型在完整点云和单视图点云输入下均保持高性能 [14] - 多夹具泛化:在Robotiq-2f-140夹具上AUC达0.68873,远超M2T2的0.24265 [17] 局限 - 依赖深度传感和实例分割质量,对立方体物体表现较差 [21] - 训练需约3K GPU小时(NVIDIA V100),计算成本较高 [21]
面试了很多端到端候选人,还是有很多人搞不清楚。。。
自动驾驶之心· 2025-07-20 08:36
端到端自动驾驶技术概述 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向 是当前薪资最高的算法岗位之一 3-5年经验可冲击百万年薪 [2] - 核心优势在于直接从传感器输入到车辆规划/控制信息的直接建模 避免了传统模块化方法的误差累积 BEV感知技术实现了模块间的统一视角 [2] - UniAD模型统一了感知和规划任务 标志着端到端时代的来临 但并非最终解决方案 后续涌现出多种技术流派 [2][4] 主要技术流派 - **二段式端到端**:以PLUTO为代表 专注于用模型实现自车规划 [4] - **一段式端到端**: - 基于感知的方法:以UniAD为代表持续发展 [4] - 基于世界模型的方法:以OccWorld为代表开创新流派 [4] - 基于扩散模型的方法:以DiffusionDrive为代表实现多模轨迹预测 [4] - **VLA方向**:大模型时代下的端到端新方向 结合视觉语言模型技术 [4][22] 行业应用与人才需求 - VLA/VLM大模型算法专家岗位薪资达40-70K*15薪 博士应届生可达90-120K*16薪 [9] - 技术岗位覆盖感知算法、模型量化部署等多方向 实习岗位日薪220-400元 [9] - 主机厂已开展端到端算法预研和量产交付 形成完整技术落地闭环 [25] 技术发展挑战 - 需同时掌握多模态大模型、BEV感知、强化学习、扩散模型等跨领域知识 [14] - 论文数量繁多且知识碎片化 缺乏系统性学习框架和实战指导 [14] - 高质量文档稀缺 提高了技术入门门槛 [14] 课程体系设计 - **知识框架**:覆盖BEV感知、扩散模型理论、强化学习与RLHF等核心技术栈 [6][23] - **案例研究**: - 二段式端到端解析PLUTO、CarPlanner等经典算法 [21] - 一段式端到端深入UniAD、OccLLaMA等前沿工作 [22] - **实战环节**: - 扩散模型轨迹预测实战Diffusion Planner [22] - VLA方向实战小米ORION开源框架 [22] - 大作业RLHF微调实现技术迁移应用 [24] 技术发展趋势 - 世界模型应用扩展至场景生成、闭环仿真等多场景 成为近年研究热点 [22] - 扩散模型与VLM结合推动多模轨迹预测技术落地 [22] - VLA被视为端到端自动驾驶的"皇冠" 工业界招聘需求旺盛 [22]
VLA的Action到底是个啥?谈谈Diffusion:从图像生成到端到端轨迹规划~
自动驾驶之心· 2025-07-19 10:19
扩散模型原理 - 扩散模型是一种生成式模型,本质是通过正向扩散和反向生成过程对数据分布进行学习和模拟[2] - 正向扩散过程从初始数据分布开始逐步添加噪声,最终达到纯噪声分布[5] - 反向生成过程从纯噪声出发,通过神经网络逐步去除噪声恢复原始数据[6] - 扩散过程基于马尔可夫链,未来状态仅依赖当前状态[8] - U-Net是扩散模型核心架构,采用编码器-解码器结构和跳跃连接增强细节恢复能力[11][12][13] 扩散模型与生成对抗网络对比 - GAN由生成器和判别器组成,通过对抗博弈生成新样本[20] - 扩散模型训练更稳定且样本质量更高,但计算成本较大[27] - GAN可融合多种噪声分布,而扩散模型通常保持噪声类型不变[28] - 扩散模型像"考古修复",GAN像"造假大师"[26] 自动驾驶应用 - 合成数据生成:解决数据稀缺问题,可生成极端天气等罕见场景[30][31] - 场景预测:生成多模态交通参与者行为预测[33] - 感知优化:用于BEV去噪和多传感器融合[34][35] - 路径规划:清华AIR团队Diffusion Planner实现多模态路径生成[36] - 端到端控制:DiffusionDrive实现实时决策[37] - 能量优化:Diffusion-ES算法求解最小能耗路径[42] 企业技术方案 - 毫末智行Diffusion Planner实现预测与规划联合建模,在nuPlan数据集表现优异[47] - 地平线HE-Drive系统利用扩散模型生成舒适驾驶轨迹[48] - 理想汽车MindVLA架构整合扩散模型优化驾驶轨迹[48] - 学术方案:条件扩散模型实现车辆极限漂移控制[49][51]
死磕技术的自动驾驶黄埔军校,三周年了~
自动驾驶之心· 2025-07-19 06:32
业务发展 - 打造了四个IP矩阵:自动驾驶之心、具身智能之心、3D视觉之心、大模型之心,覆盖知识星球、公众号、视频号、哔哩哔哩、知乎等平台 [2] - 从纯线上教育转型为全栈式服务平台,新增硬件业务、论文辅导和求职业务,并在杭州设立线下办公室 [2] - 知识付费仍是核心业务,但重点拓展了硬件教具、线下培训和求职招聘等多元化服务 [2] 技术方向 - 自动驾驶行业正经历大模型引发的智驾方案升级,从VLM/VLA向更先进的端到端解决方案演进 [2] - 具身智能和大模型是重点孵化方向,已举办多期圆桌论坛,受到学术界和产业界广泛关注 [2] - 视觉大语言模型(VLM)在自动驾驶中的应用包括预训练、迁移学习和知识蒸馏等多个技术分支 [9][12][13] 社区建设 - 自动驾驶之心知识星球已成为国内最大的自动驾驶技术社区,拥有近4000名成员和100+行业专家 [4] - 社区覆盖30+自动驾驶技术学习路线,包括端到端自动驾驶、BEV感知、Occupancy等前沿方向 [4] - 每周活跃度位居国内前20,注重成员积极性和技术交流 [4] 内容体系 - 知识星球包含四大板块:技术领域分类汇总、科研界顶级大佬直播、求职资料分享和痛点问题解答 [7] - 整理了视觉大语言模型、世界模型、扩散模型和端到端自动驾驶四大前沿技术方向的资源 [6] - 汇总了多个Awesome资源库,涵盖VLM架构、推理策略、安全隐私等细分领域 [8] 数据集资源 - 整理了VLM预训练使用的多个大型数据集,包括LAION5B(5B图文对)、WuKong(100M中文图文对)等 [15] - 汇总了自动驾驶相关数据集,如nuScenes、Waymo Open Dataset、BDD100K等,涵盖感知、预测、规划等任务 [21][22] - 收集了语言增强的自动驾驶系统数据集,支持自然语言导航和空间推理等高级功能 [22] 应用领域 - 智能交通领域应用包括语言引导车辆检索、视觉问答和视频异常识别等技术 [23] - 自动驾驶感知方向涉及行人检测、3D目标检测和开放词汇语义分割等任务 [24] - 定位规划领域探索语言引导导航、轨迹预测和运动规划等解决方案 [25] 行业趋势 - 世界模型在自动驾驶中快速发展,涵盖3D场景理解、未来场景演化和物理原理建模等方向 [30][31] - 扩散模型在自动驾驶中的应用包括场景生成、数据增强和轨迹预测等多个方面 [33][39] - 端到端自动驾驶研究聚焦多模态融合、可解释性和长尾分布处理等关键问题 [45][55]
死磕技术的自动驾驶黄埔军校,三周年了。。。
自动驾驶之心· 2025-07-19 03:04
自动驾驶技术发展现状 - 自动驾驶技术正处于从辅助驾驶(L2/L3)向高阶无人驾驶(L4/L5)跨越的关键阶段 [2] - 2025年自动驾驶、具身智能、大模型Agent三大赛道是AI竞争高地 [2] - 端到端自动驾驶成为主流学习方向,建议从BEV感知开始逐步深入 [2] 自动驾驶技术社区 - 自动驾驶之心知识星球是国内最大的自动驾驶学习社区,拥有近4000名成员 [2] - 社区汇聚100+行业专家,提供30+技术方向学习路线 [2] - 覆盖端到端自动驾驶、世界模型、视觉大语言模型等前沿方向 [2][4] 视觉大语言模型研究 - CVPR 2024发布多篇视觉语言模型预训练论文,涉及效率提升和公平性优化 [11] - 视觉语言模型评估涵盖图像分类、文本检索、行为识别等任务 [16][17][18] - 大规模预训练数据集包括LAION5B(50亿图文对)、WebLI(120亿图文对) [15] 自动驾驶数据集 - 主流自动驾驶数据集包括nuScenes、Waymo Open Dataset、BDD100K等 [21] - 语言增强数据集支持自然语言导航、视觉问答等任务 [22] - 图像分类评估数据集包含ImageNet-1k(128万训练图)、CIFAR-100等 [16] 技术应用领域 - 智能交通领域应用包括语言引导车辆检索、视觉问答系统 [23] - 自动驾驶感知方向研究语言引导3D检测、开放词汇分割等任务 [24] - 决策控制领域探索大语言模型在轨迹预测和运动规划中的应用 [25][26] 世界模型研究进展 - 2024年发布DriveWorld、GAIA-1等驾驶世界模型,支持场景生成与理解 [30][32] - 世界模型可预测未来视觉观测并辅助规划决策 [32] - 研究涵盖4D场景重建、占用预测等方向 [32] 扩散模型应用 - 扩散模型在自动驾驶中用于场景生成、数据增强和轨迹预测 [39] - CVPR 2024发布MagicDriveDiT等街景生成模型 [39] - 研究聚焦时空一致性、多视角生成等挑战 [39] 端到端自动驾驶 - 方法分为模仿学习、强化学习和多任务学习三大类 [61] - 最新工作如DriveGPT4、DriveMLM探索大模型与规划控制结合 [27][51] - 挑战包括长尾分布处理、安全验证等 [55][57] 行业资源与生态 - 社区提供TensorRT部署、BEV感知等工程问题解决方案 [71][73] - 与地平线、蔚来等公司建立内推渠道 [110] - 成员来自卡耐基梅隆、清华等高校及头部自动驾驶公司 [106][107]
ICCV 2025|训练太复杂?对图片语义、布局要求太高?图像morphing终于一步到位
机器之心· 2025-07-18 00:38
核心观点 - FreeMorph是一种无需训练、一步到位的图像变形方法,能够在不同语义与布局的图像之间生成流畅自然的过渡效果 [5] - 该方法通过改进扩散模型的自注意力机制,解决了传统方法中训练成本高、适应性差的问题 [5][11] - FreeMorph在30秒内即可为两张输入图像生成高质量平滑过渡,显著优于现有技术 [32] 技术背景 - 传统图像变形技术依赖复杂的图像对齐算法和颜色插值,难以处理复杂纹理和多样语义的图像 [4] - 现有深度学习方法如GAN、VAE存在训练成本高、数据依赖强、反演不稳定等问题 [4] - 基于Stable Diffusion和CLIP等大模型的方法仍面临训练时间长(约30分钟/案例)和语义处理能力不足的挑战 [9] 技术方案 - 引导感知的球面插值:通过修改预训练扩散模型的自注意力模块,融入输入图像的显式引导来增强模型 [11] - 球面特征聚合融合自注意力模块的Key和Value特征,确保过渡一致性 [16] - 先验引导的自注意力机制保留输入图像的独特身份特征 [18] - 步骤导向的变化趋势:融合两个输入图像的自注意力模块,实现受控且一致的过渡 [21] - 改进的反向去噪和正向扩散过程:将创新组件集成到原始DDIM框架中 [22][25] 技术优势 - 无需训练或调参,仅需两张输入图像即可完成变形 [5] - 处理时间仅需30秒,显著快于现有方法(如IMPUS需要30分钟) [32] - 能够处理语义多样、布局复杂的图像对,保持身份特征和平滑过渡 [27][30] - 在四组不同类别的评估数据集上表现优异 [12] 应用前景 - 可应用于动画、电影特效或照片编辑等领域 [3] - 能够捕捉细微变化,如不同颜色的蛋糕或人物表情的微妙差异 [27] - 为training-free图像变形打开了新的可能性 [5] 技术局限 - 处理语义或布局差异较大的图像时,过渡可能不够平滑 [34] - 继承了Stable Diffusion的固有偏差,在人体四肢等结构处理上准确性受影响 [34]
入职小米两个月了,还没摸过算法代码。。。
自动驾驶之心· 2025-07-16 08:46
自动驾驶行业趋势与职业发展 - 自动驾驶行业当前处于快速发展阶段,大模型与端到端技术成为核心方向[4][6] - 小米汽车在自动驾驶领域势头强劲,虽薪资水平中等但短期发展潜力较大[7] - 医学图像与工业检测领域技术门槛低于自动驾驶,可作为从业者备选方向[6] 求职与技能提升策略 - 实习经历需适当包装,重点突出与目标岗位相关的技术亮点[3][6] - 建议利用公司资源补充自动驾驶算法实践经验(如BEV、端到端),同时学习VLA、SFT等技术[6] - 需同步准备秋招与实习转正,多offer可增强薪资谈判能力[5][6] 技术研究方向与资源 - 视觉大语言模型、世界模型、扩散模型和端到端自动驾驶为四大前沿方向[10] - 自动驾驶数据集覆盖2D/3D目标检测、语义分割、轨迹预测等任务,包括NuScenes、BDD100K等主流数据集[25][26] - 扩散模型在自动驾驶中应用于场景生成、3D补全等任务,如DriveDreamer、MagicDriveDiT等创新方法[43] 社区与学习平台 - 知识星球提供自动驾驶课程、硬件资料及招聘信息,已形成学术-产品-就业闭环生态[8][62] - 社区目标3年内聚集万人规模,现有华为天才少年及领域专家入驻[8] - 会员可获取5000+干货内容、100+场行业直播及求职咨询等权益[62] 端到端自动驾驶进展 - 开源仓库收录E2E驾驶最新研究成果,涵盖感知、预测、规划全流程[45][49] - 特斯拉FSD验证了端到端模型可行性,但开环评估仍存争议[49] - 典型方法包括DriveGPT4(大模型驱动)、VADv2(概率规划)等[52][55]
ICML 2025|多模态理解与生成最新进展:港科联合SnapResearch发布ThinkDiff,为扩散模型装上大脑
机器之心· 2025-07-16 04:21
多模态理解与生成技术进展 - 当前文本到图像生成技术如Stable Diffusion和Flux缺乏真正的多模态推理能力,难以理解图像与文本的复杂逻辑关系[1] - OpenAI的GPT-4o和Google的Gemini Pro展示了强大能力,但依赖超大规模参数和算力资源[2] - 香港科技大学与Snap Research提出的ThinkDiff方法,仅需少量数据和数小时训练即可实现多模态推理式生成[3] ThinkDiff核心技术 - 核心创新在于将视觉语言模型(VLM)的推理能力迁移至扩散模型,结合两者优势实现高质量生成[7] - 利用LLM与Diffusion共享特征空间的特性,通过代理任务将VLM与LLM解码器对齐[9][11] - 采用掩码训练策略强制对齐网络深度理解多模态信息,避免特征对齐走捷径[15] 模型架构与变体 - ThinkDiff-LVLM版本继承大型视觉语言模型的多模态理解能力[16] - ThinkDiff-CLIP版本强化文本图像组合能力,可扩展至视频生成领域[16][34] - 网络设计关键:对齐VLM自回归生成的tokens特征而非输入tokens,实现真正的推理能力传递[15] 性能表现 - 在CoBSAT基准测试中全面领先:Color-I准确率0.638(较SEED-LLaMA提升32.4%),Action-II准确率0.664(提升220.8%)[19] - 训练效率显著:仅用4块A100训练5小时即达0.463平均准确率,远优于需64块A100训练216小时的SEED-LLaMA[21] - 定性测试显示其生成质量与商业模型Gemini相当,且具备视频生成扩展能力[25][34] 行业影响 - 突破性解决低资源环境下的多模态推理难题,为学术研究和工业应用提供新路径[3][36] - 开创扩散模型理解复杂图文组合的新范式,显著提升生成式AI的语义理解深度[7][15] - 技术方案具备高度可扩展性,可适配不同VLM架构并延伸至视频生成领域[16][34]
面试了很多端到端候选人,发现还是有很多人搞不清楚。。。
自动驾驶之心· 2025-07-13 13:18
端到端自动驾驶技术概述 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向 是当前薪资最高的算法岗位之一 3-5年经验可达百万年薪 [2] - 端到端系统实现从传感器输入到车辆规划/控制信息的直接建模 避免模块化方法间的误差累积 BEV感知打通模块化壁垒 UniAD统一感知和规划任务 [2] - 学术界和工业界聚焦端到端技术 衍生出多种算法流派 UniAD并非最终解 新算法不断涌现 [2] 端到端技术发展现状 - 技术方向包括多模态大模型 BEV感知 强化学习 视觉Transformer 扩散模型等 学习路径复杂 论文数量繁多 知识碎片化 [4] - 高质量文档缺乏 提高入门难度 学习目标驱动导航需结合实战 但缺乏系统指导 难以从理论过渡到实践 [4] - 最新技术流派包括:PLUTO为代表的二段式端到端 UniAD为代表的基于感知的一段式端到端 OccWorld为代表的基于世界模型的一段式端到端 DiffusionDrive为代表的基于扩散模型的一段式端到端 [9] 端到端课程体系 - 课程特点:直击痛点快速入门 构建领域框架提升研究能力 理论结合实践学以致用 [5][6][7] - 课程大纲:端到端算法介绍 背景知识 二段式端到端 一段式端到端与VLA 课程大作业 [11][12][13][15] - 重点章节:一段式端到端与VLA为课程精华 涵盖基于感知/世界模型/扩散模型/VLA的四大子领域 [13] 技术深度解析 - 二段式端到端:分析PLUTO CarPlanner Plan-R1等经典与前沿工作 对比一段式优缺点 [12] - 一段式端到端:UniAD和VAD为奠基作 PARA-Drive为最新进展 世界模型应用广泛 扩散模型实现多模轨迹预测 VLA为当前技术皇冠 [13] - 关键技术:Transformer CLIP LLAVA BEV感知 扩散模型 RLHF GRPO等构成完整技术栈 [14] 课程实施细节 - 开课时间8月15日 三个月完成 采用离线视频教学+VIP群答疑+三次线上答疑模式 [20] - 学员需自备4090及以上GPU 具备自动驾驶基础 熟悉Transformer 强化学习 BEV感知等技术概念 [22] - 预期成果:达到1年经验算法工程师水平 掌握端到端技术框架 可复现主流算法 应用于实际项目 [22]
「流匹配」成ICML 2025超热门主题!网友:都说了学物理的不准转计算机
机器之心· 2025-07-13 04:58
生成式AI技术前沿 - 流体力学概念融入生成式AI,构建简洁优雅的模型形态 [2][8] - 流匹配(Flow Matching)技术成为ICML 2025生成领域的核心研究方向,具备高质量、稳定性和通用性 [4][5][7] - FLUX模型发布后,流匹配架构因处理多类型输入能力受到广泛关注 [6] 流匹配技术原理 - 核心思想:通过可逆变换将噪声分布映射到数据分布,学习噪声到数据的转化路径 [15][18] - 采用插值方式定义噪声与数据点间的运动轨迹,通过速度场控制样本生成 [16][17][25] - 基于连续性方程,将物理密度变化规律应用于概率质量分布建模 [20][21][23] 技术实现细节 - 条件流(conditional flow)通过直线路径定义噪声到目标数据点的定向移动 [28][29] - 总体速度场由多条路径的平均方向决定,优先反映高概率样本路径 [31][33] - 变分流匹配(VFM)通过推断终点分布均值简化速度场计算 [34] 与扩散模型的关系 - 扩散模型是流匹配的子集,高斯分布插值策略下两者等价 [40][41][43] - 流匹配提出速度场输出新形式,可能影响高阶采样器性能 [44] - 训练权重函数与噪声调度策略在两种模型中高度一致 [45][46] 行业应用与资源 - 流匹配技术伪代码及训练过程已公开,支持实际应用开发 [36] - 关键论文《Flow Matching for Generative Modeling》提供理论基础 [38] - 技术社区(知乎、Twitter)活跃,提供多角度解析与案例 [10][13][47]