Workflow
AnchDrive
icon
搜索文档
AnchDrive:一种新端到端自动驾驶扩散策略(上大&博世)
自动驾驶之心· 2025-09-26 07:50
端到端自动驾驶技术演进 - 端到端自动驾驶算法直接从原始传感器数据学习控制信号,绕过模块化设计复杂性,减少感知误差累积,提升系统一致性与鲁棒性 [4][12] - 早期方法依赖自车查询回归单模态轨迹,在复杂场景中易因行为多模态性导致预测失效 [6][12] - 多模态建模策略通过生成多个轨迹提案提升决策覆盖率,但固定轨迹集离散化限制模型表达灵活性 [6][13] 扩散模型在轨迹规划中的应用 - 扩散模型具备强大生成能力与自适应能力,适合多模态轨迹规划,能从高维联合分布采样并建模连续控制空间 [7][13] - 模型天然支持条件分布建模,可整合轨迹历史、地图语义、自车目标等上下文输入,提升策略一致性与情境相关性 [7][13] - 测试阶段可通过可控采样加入额外约束,无需重新训练模型 [7][13] AnchDrive框架核心创新 - 采用截断扩散策略,从混合轨迹锚点集初始化扩散过程,显著减少去噪步骤,降低计算成本与延迟 [8][15][29] - 动态锚点由多头部解码器实时生成,处理BEV场景表征、目标特征、地图特征和VLM指令四类输入,捕捉局部环境行为多样性 [27][29] - 静态锚点集从大规模人类驾驶数据预采样,提供跨场景行为先验知识,增强模型泛化能力 [8][28][29] 混合感知架构设计 - 密集感知分支构建128×128网格BEV特征图,覆盖64×64米区域,提供场景纹理与空间关系的隐式引导 [22][23] - 稀疏感知分支执行3D目标检测和在线高精地图矢量化,输出带属性边界框及矢量化地图元素,通过MLP编码生成目标与地图嵌入 [23] - 双分支协同融合隐式模式与显式几何约束,为规划提供全面可靠的环境理解基础 [21][23] 性能表现与基准对比 - 在NAVSIM v2基准测试中EPDMS达到85.5分,显著优于主流方法:较VADv2提升8.9分,较Hydra-MDP提升5.7分,较Hydra-MDP++提升4.1分 [9][15][34] - 轨迹锚点数量从VADv2的8192个大幅缩减至20个,减少比例达400倍 [34] - 在所有子分数指标上均优于DiffusionDrive基准方法,EPDMS分数提升1.2分 [34] 消融实验关键发现 - 动态锚点生成器中:BEV特征轨迹头使EPDMS提升0.5分;目标特征轨迹头显著提高无责任碰撞(NC)分数;地图特征轨迹头提升可行驶区域合规性(DAC)和行驶方向合规性(DDC)指标 [36] - 整合VLM指令后EPDMS达到最终85.5分 [36] - 2步去噪步骤在规划性能与计算效率间取得最佳平衡,更多步骤不保证性能提升且增加推理延迟 [36] 技术实现细节 - 实验基于NAVSIM数据集,标注频率2Hz,提供8摄像头360度视野和5传感器融合LiDAR点云数据 [32] - EPDMS评价指标整合乘法惩罚分数(无责任碰撞、可行驶区域合规性、行驶方向合规性、交通信号灯合规性)和加权平均分数(碰撞时间、自车进度、历史舒适性、车道保持、扩展舒适性) [32] - 模型完全端到端学习,未依赖任何手工后处理步骤 [34]