基础模型与大规模训练

搜索文档
深度综述 | 300+论文带你看懂:纯视觉如何将VLA推向自动驾驶和具身智能巅峰!
自动驾驶之心· 2025-09-24 23:33
文章核心观点 - 视觉-语言-动作模型代表了机器人技术从传统控制向通用机器人技术的范式转变,将视觉-语言模型从被动生成器转变为能在复杂环境中决策的主动智能体 [1] - 该综述综合了300多项最新研究,对VLA方法进行了系统分类,并探讨了其应用、关键挑战及未来发展方向 [1] - VLA模型通过整合视觉编码器、大型语言模型和强化学习的优势,旨在弥合“感知-理解-动作”的鸿沟,成为实现通用具身智能的核心路径 [16][23] VLA模型的核心范式与分类 - VLA方法被划分为五大范式:自回归模型、扩散模型、强化学习模型、混合方法及专用方法 [1][24] - 自回归模型通过Transformer架构统一多模态感知和序列动作生成,支持跨任务泛化,但存在误差累积和延迟问题 [26][39] - 扩散模型将机器人控制从确定性回归转变为概率性生成,支持从同一观测生成多种有效轨迹,但在动态环境中的轨迹稳定性仍需改进 [41][43] - 强化学习微调模型通过融合视觉-语言基础模型与RL算法,增强VLA的感知和决策能力,擅长结合人类反馈和适应新任务 [48][51] VLA模型的技术演进与关键创新 - VLA模型的发展经历了从单模态基础模型到多模态融合,再到“多模态+可执行控制”的演进路径 [16] - 关键技术创新包括模态token化、自回归动作生成、以及将视觉、语言、状态和动作统一在单一序列建模框架中 [20][30] - 代表性模型如Gato实现了异质模态的统一token化,RT-1基于13万条真实世界数据训练,RT-2融入了网络级VLM知识 [30] - 扩散模型领域的创新包括SE(3)-DiffusionFields将扩散扩展到SE(3)位姿空间,以及Dita构建的可扩展扩散Transformer [42][45] VLA模型的应用场景与机器人形态 - VLA模型已应用于多种机器人形态,包括机械臂、四足机器人、人形机器人和轮式机器人 [7] - 在自动驾驶领域,VLA模型用于轨迹生成和危险规避,CoVLA构建了包含5万条语言指令-轨迹对的大规模数据集 [55] - 专用领域适配包括GUI交互、人形全身控制以及特殊任务如魔方还原,展现了VLA的通用性 [55][57] - 人形机器人控制通过分层VLA框架实现,如LeVERB将视觉-语言处理与动力学级动作处理耦合,支持150+任务的仿真到现实迁移 [55] 数据集与仿真平台的支撑作用 - VLA模型的发展高度依赖高质量数据集和仿真平台,以解决数据稀缺和实机测试风险高的问题 [17] - 真实世界数据集如BridgeData涵盖10个环境中的71项任务,Open X-Embodiment整合了22个机器人数据集,包含160266个任务 [21][65] - 仿真平台如MuJoCo/Isaac Gym提供精确的物理仿真,CARLA面向自动驾驶提供真实城市交通场景,支持安全高效的大规模训练 [21] - 评估指标通常采用成功率、语言遵循率、L2距离和完成率等,以衡量模型的性能、鲁棒性和泛化能力 [66][68][74] VLA模型面临的挑战与未来方向 - 关键挑战包括可扩展性不足、在未知场景中的泛化性下降、实机部署的安全性风险以及仿真到现实的差距 [23][29] - 未来研究方向需解决数据局限性、推理速度、安全性以及长尾场景覆盖不足等问题,以加速通用机器人技术的发展 [7][23] - 效率优化和轻量化设计成为趋势,如MoLe-VLA通过混合专家路由降低40%计算成本,BitVLA采用1位量化将内存占用降至30% [36][55] - 安全机制和可解释性研究受到重视,SafeVLA引入安全评论网络和约束策略优化框架,以降低开放环境中的风险事件 [51][57]