Meta MTIA
搜索文档
【国信电子胡剑团队|2026年年度策略】从星星之火到全面燎原的本土硬科技收获之年
剑道电子· 2025-12-31 02:45
文章核心观点 - 2025年AI产业链在业绩趋势中从分歧走向共识,2026年有望成为本土硬科技收获之年 [3][7] - 电子行业景气周期自2021年下行近2年后,于2023年下半年筑底回升,目前仍处在由AI创新拉动的温和上行过程中 [3][7] - 行业在“宏观政策周期、产业库存周期、AI创新周期”共振上行及被动基金快速扩容的助力下,呈现出显著的估值扩张趋势 [3][7] - 在经历了2025年由DeepSeek兴起引致的“算力通缩”叙事逻辑冲击及美国关税战冲击后,行情在AI产业链亮眼业绩中走向共识,截至12月16日电子行业上涨40.22%,位居全行业第三 [7] - 展望2026年,AI大模型推理能力持续进阶,大模型与端侧应用的闭环正在形成,算力+存力硬件层面供不应求态势将延续,国内先进制程扩张和自主可控推进速度仍有较大预期差 [7] - 在2020年全面开启的5G创新周期中已有冒尖趋势的中国科技产业,在国内工程师红利支撑下,经历了逾5年的“人财物”快速累积后,正在新一轮AI创新周期中体现出更强的全球竞争力,2026年有望成为本土硬科技收获之年 [7] 2025年行情回顾:AI在业绩趋势中从分歧走向共识 - 2025年初至12月16日,电子行业整体上涨40.22%,涨跌幅位居全行业第三,其中元件、电子化学品、其他电子、消费电子、半导体、光学光电子分别上涨93.19%、46.88%、40.63%、39.40%、38.37%、7.66% [16] - 2025年1-2月,延续2024年末“字节火山引擎大会”引燃的AI端侧创新预期,端侧SoC带动半导体及消费电子上涨,期间电子上涨8.02% [19] - 2025年3-5月,受美国加征关税、技术限制、“算力通缩”叙事逻辑冲击及基金行业新规影响,期间电子下跌11.55% [19] - 2025年6-10月,在AI算力需求拉动下,全球逻辑类芯片月销售额同比增速大幅扩张,“算力通缩”预期被证伪,AI基建相关的光模块、PCB、服务器环节业绩全面超预期,传导至存储环节全面紧缺及大规模涨价,期间电子上涨60.68% [19] - 2025年11月以来,受抢出口透支订单、消费补贴退坡、存储缺货涨价及基金调仓预期影响,板块热度降温,自10月至12月16日电子下跌8.66% [19] - 估值方面,截至2025年12月16日电子行业整体TTM PE为62.61倍,处于近五年的94.5%分位 [20] - 截至三季度末,公募基金电子板块重点持仓市值排行前五的公司分别是寒武纪-U、中芯国际、海光信息、澜起科技、立讯精密 [22] - 截至2025年12月16日,沪(深)股通电子板块持仓市值排行前五的公司分别是北方华创、立讯精密、工业富联、豪威集团、澜起科技 [24] AI大模型群雄逐鹿,英伟达引领算力迭代,PCB、服务器产业链延续高增长 - 大模型通过架构创新持续提升效率与性能,混合专家架构通过稀疏化实现更高效推理,创新的注意力机制降低计算复杂度与内存需求,深度思考模式通过多轮推演减少幻觉 [8][27][33][34][36] - 得益于CSP、主权云等算力需求扩张及AI推理应用蓬勃发展,TrendForce预计2026年全球八大CSP合计资本支出将增长40%达到6000亿美元以上,全球AI服务器出货量将增长20.9% [8][43] - 英伟达新一代Rubin架构AI服务器将为分离式推理带来革命性变化,英伟达预计在24年底前,Blackwell系列GPU总出货将达2000万颗,合计订单将达5000亿美元 [8][54] - 基于算力军备竞赛的市场规模扩容及算力产品迭代带来的ASP提升,伴随Scale Up与Scale Out带来的智算集群扩展,2026年深度参与全球产业链分工的PCB、服务器产业链将迎来量价齐升的高速成长期 [8] - 超节点是一种新型AI算力基础设施架构,旨在应对大模型训练与推理对极致通信效率和高密度算力协同的需求,例如华为CloudMatrix384将算力从单台服务器的6.4 Pflops提升到超节点的300 Pflops,算力提升50倍 [57] - PCB行业自2024年年初进入景气上行阶段,随着2025年AI基建加速出现供不应求,预计将持续到2027年,日本10层以上PCB产值从2023年9月的15.87亿日元低位升至2025年7月的34.90亿日元高位,价格从2023年7月的21.04万日元/平米涨至2025年9月的40.08万日元/平米,涨幅90% [65] - 预计2026年全球算力类PCB市场需求将达到1815亿元,而全球Top13的PCB厂商相关产值约为1320亿元,预计将有近200亿元的供需缺口,2027年供需缺口将大幅收窄 [72] - 英伟达Vera Rubin系列机柜中,由于新增CPX GPU及布局变化,PCB价值量大幅提升,预计在满配的VR NVL144 CPX机柜中,单GPU对应PCB价值量达到8000余元 [79] AI算力+存力:国产算力通用芯片与ASIC方案齐发力,存力缺货涨价有望贯穿全年 - 国产算力芯片积极更新迭代,华为计划2026年推出昇腾950 Pro,2026年Q4上市超节点Atlas 950 SuperPOD;寒武纪、沐曦、壁仞、摩尔线程等国产卡顺利导入智算中心 [9] - 受限于美国BIS多次制裁,CSP大厂的合规/ASIC项目将同步迎来发展机遇,其中非一线云厂的自研项目有望为国内ASIC厂商带来可观增量 [9] - 存力方面,AI时代的DRAM从“附属角色”转变为“性能瓶颈突破口”,预计2026年DRAM位元需求量有望同比增加26% [9] - 随着AI推理兴起,传统HDD的局限性加速了SSD渗透,NAND缺货态势从局部应用蔓延至全盘,价格指数自2025年9月至12月已上涨超40% [9] - 预计2026年DRAM及NAND仍将呈现较严重的供不应求,价格有望延续涨势 [9] - 海外算力芯片存在后门风险,2025年7月美国议员呼吁要求美出口的先进芯片必须配备“追踪定位”功能,国家网信办约谈英伟达要求其对H20算力芯片漏洞后门安全风险进行说明 [83] - 蚂蚁集团已部署万卡规模的国产算力集群,训练任务稳定性超过98%,训练与推理性能可媲美国际算力集群,DeepSeek UEBMO FP8是针对下一代国产芯片设计 [86] AI运力+电力:运力成为算力提升的重要突破口,算力增长推动电源架构同步升级 - 运力环节需解决数据进出内存的问题,并实现服务器内部、机架之间以及集群间的顺畅通信,在国内高端算力芯片流片受限的背景下,运力环节的优化成为重要突破口 [11] - 预计2024-2030年全球高速互连芯片市场规模CAGR为21.2%,中国市场的占比将由25%提高至30%,为HBM内存、PCIe互连芯片、CXL互连芯片、硅光芯片、D2D等产业链创造增量市场 [11] - 随着数据中心芯片及机架处理功率水涨船高,英飞凌预测单GPU的功耗将呈指数级增长,到2030年达到约2000W,机架的峰值功耗将达到300kW以上 [11] - 机架侧大幅、快速波动的功率曲线对公共电网稳定性构成挑战,因此要求供电方案向HVDC方向发展,SST、Droop、ZVS、GaN器件将成为AI电源的核心方向 [11] AI端侧:AI Agent重塑交互范式,大厂争先布局端侧入口,消费电子创新大年开启 - 随着大模型在多模态理解、通用推理与任务执行能力上的持续演进,AI正由工具型能力升级为能够理解用户意图并自主执行任务的AI Agent,端侧消费电子产品是AI商业化闭环的关键承载层,有望系统性重构人机交互范式 [12] - 手机、眼镜、耳机以及家庭机器人等多种终端形态,有望围绕AI Agent构建协同网络,推动AI从单点功能升级迈向跨场景、跨终端的系统级体验 [12] - 语音、视觉及环境感知等多模态输入的重要性提升,对端侧算力、感知能力与连接能力提出更高要求 [12] - 当前端侧相关技术与产业基础已趋于成熟,商业模式的关键突破有望形成“非线性放大效应”,展望2026年,从年初的CES到年中的WWDC,以及头部厂商的持续探索,均可能成为引爆市场情绪与产业投资共识的关键催化 [12] 半导体:自主可控进程有望超预期的自主可控产业链,以及在景气复苏阶段加速国产替代的模拟芯片 - 据SIA数据,2024年中国占全球半导体销售额的28%,但本土供应比例仅4.5%,自给率仍偏低,且由于增量主要来自GPU、HBM等云侧增量,自给率较2023年有所降低 [12] - A股半导体公司的财务表现持续改善,据统计的146家公司中,单季度收入最高值落在2025年的占比54%,2025年Q3 SW半导体板块整体毛利率处于2020年Q2和2021年Q1之间,净利率与2020年Q4、2021年Q1水平相当 [12] - 全球半导体销售额已连续八个季度同比增长,2025年12月WSTS再次上修了对2025和2026年的预测值,预计2024-2026年全球半导体将实现连续3年两位数增长 [12] - 除了AI增量外,国内芯片设计企业崛起和在地化制造需求为自主制造链提供增量,重点关注晶圆代工、先进封装和上游半导体设备材料环节 [12] - 模拟芯片在半导体产品品类周期靠后,国际大厂TI、ADI 2025年收入开始同比转正,标志着行业进入复苏阶段,国内企业近几年推出的新品有望进入规模放量阶段 [12] - 长期来看AI数据中心以及自动驾驶、人形机器人等AI应用均为模拟芯片带来广泛增量,同时模拟芯片也是国产化空间较大的细分,将持续受益国产化率提高 [12]
科技:ASIC 受益标的;按 AI 芯片平台划分的营收敞口- Tech_ ASIC beneficiaries; revenues exposures by AI chips platform; Read across to Google's Gemini 3 announcement
2025-12-01 03:18
**行业与公司** * 报告聚焦于AI服务器供应链,特别是大中华区科技公司(GC Tech)[1][2] * 重点分析专用集成电路(ASIC)在AI推理阶段的应用趋势及其对产业链公司的影响[1] * 涉及公司众多,包括ODM厂商(如Wiwynn、Hon Hai)、零部件供应商(如AVC、Auras)、PCB/CCL厂商(如Innolight、Elite Material)、半导体公司(如TSMC、MediaTek)等[6][7][8] **核心观点与论据** * **ASIC增长趋势**:对ASIC上升趋势持积极看法,尤其在AI推理阶段[1] 预计2025E-27E AI芯片总需求分别为1000万、1400万、1700万颗,ASIC出货占比将从38%提升至45%[1][11][12] * **ASIC优势**:相比通用GPU,ASIC具有更高能效、更低预算负担和更高定制化程度,降低客户对单一供应商依赖[1] ASIC AI服务器为组件和系统供应商带来更高毛利率,因其更定制化,价值增加空间更大[15] 例如,Wiwynn(ASIC业务占比较高)自2025年起毛利率较FII(GPU业务占比较高)有2-3个百分点的优势[15][18] ASIC业务运营负担更低,库存周转更快,Wiwynn的TTM现金转换周期在3Q25为47天,低于FII的60天[16][20] * **市场驱动**:主要云服务提供商(CSPs)为自身AI模型开发内部芯片,针对搜索、推理、编码等特定用例定制[1] 全球服务器总市场规模(TAM)预计2025E-27E将分别达到3.59万亿美元、4.74万亿美元、5.63万亿美元,同比增长42%、32%、19%[13][14] AI训练服务器收入在2025E-27E预计同比增长35%、46%、20%[32] * **最新ASIC发展动态**: * 谷歌于2025年11月7日宣布Ironwood TPU(第七代)全面上市,性能较第六代Trillium TPU提升4倍,单个超级模块可互联9216颗芯片[24] * 谷歌于2025年11月18日发布Gemini 3 Pro模型,由自家TPU训练[1][24] * 亚马逊计划投资高达500亿美元为美国政府机构建设AI基础设施,将采用自研Trainium芯片和英伟达GPU[24] * OpenAI于2025年10月13日宣布与博通合作开发内部加速器,目标从2026年下半年开始部署,到2029年底完成10GW计算能力部署[24] **供应链各环节收入敞口分析** * **ODM厂商**:Wiwynn是2026E ASIC收入敞口最大的ODM厂商,得益于与亚马逊(Trainium)和Meta(MTIA)的合作[6] 其他ODM厂商如Hon Hai / FII、Quanta、Inventec和Wistron(通过Wiwynn)也有ASIC敞口,但因收入规模大,占比相对较小[6] * **冷却与机箱组件**:AVC、Auras和Chenbro对亚马逊Trainium相关业务的收入敞口在2026E达到15%-35%[6] LandMark对谷歌TPU相关需求的收入敞口估计为45-50%[6] * **PCB/CCL厂商**:Innolight和Elite Material对谷歌TPU相关需求的收入敞口在2026E分别为25-30%和15-20%[7] GCE和TUC对亚马逊Trainium的收入敞口分别为30%+和15%+,GCE对Meta MTIA ASIC的收入敞口为20%+[7] * **半导体公司**:Winway对谷歌TPU的收入敞口在2026E为15-20%[8] MPI对亚马逊Trainium的收入敞口在2026E为15-20%[8] 多数服务器厂商对AMD GPU供应链有敞口,但因终端需求较小,2026E收入敞口普遍低于10%[8] * **英伟达GPU主导地位**:英伟达GPU解决方案仍是主要收入贡献者,为Gigabyte(服务器品牌)、Quanta和FII(ODM)、AVC和Auras(冷却组件)、Innolight(光模块)、KYEC(半导体测试服务)贡献40%+的收入[8] **重点公司点评** * **Hon Hai (2317.TW)**:主要服务器ODM厂商,预计2026年GPU:ASIC收入比为80:20,是谷歌TPU服务器供应商之一[23] * **Innolight (300308.SZ)**:高速光模块关键供应商,预计800G光模块收入在2026E同比增长104%,1.6T光模块收入在2027E同比增长110%[25] * **LandMark (3081.TWO)**:提供用于高速硅光光模块的InP激光二极管和外延片,预计数通业务收入占比将从2025E的71%提升至2026E的85%[26] * **Wiwynn (6669.TW)**:AI服务器ODM厂商,1Q/2Q/3Q25营收同比增长100%+,10月营收同比增长158%[27] 正在美国建设产能以缓解地缘政治风险[27] * **台湾半导体公司**:TSMC为TPU和其他AI ASIC提供前道晶圆制造和后道先进封装服务,预计TPU占其2026E总营收<5%[29] MediaTek是谷歌TPU的设计服务供应商,预计TPU在2026E贡献约10亿美元收入(占营收5%)[29] Winway是谷歌TPU的关键测试插座供应商,预计TPU收入占2026E总营收15–20%+[29] MPI是TPU的主要探针卡供应商,预计TPU占2026E营收8–12%[29] Hon Precision是AI/HPC测试分选机主导供应商,预计TPU占2026E总营收5–10%[29][30] KYEC是TPU的主要FT测试服务提供商,预计TPU收入敞口从2025E的2%上升至2026E的5–10%[30] **其他重要内容** * **投资建议**:报告列出看多(Buy)公司包括Wiwynn、Innolight、Landmark、AVC、Auras、Chenbro、EMC、TSMC、WinWay、MPI和Hon Precision;中性(Neutral)公司包括MediaTek和KYEC[1][40]
Data Centers, AI, and Energy: Everything You Need to Know
Yahoo Finance· 2025-11-25 22:00
AI基础设施架构与能耗演变 - AI基础设施初始阶段由图形处理器(GPU)定义,其并行处理能力使其在AI训练任务上比中央处理器(CPU)呈指数级更高效[1] - 生成式AI崛起推动行业从通用CPU服务器全面转向“加速服务器”,导致计算密度和能耗急剧增加[2][6] - 传统服务器机架功耗为5-10千瓦,而搭载Blackwell或H100 GPU的现代机架功耗达50-100千瓦,增长十倍,迫使冷却技术从风冷转向液冷[7][9] 关键芯片技术与功耗特征 - 英伟达H100“Hopper”芯片单颗峰值功耗达700瓦,搭载8-16颗GPU的服务器机架功率密度超出传统数据中心设计极限[8] - 英伟达下一代B200“Blackwell”架构单芯片功耗高达1200瓦,AMD Instinct MI300X作为主要竞争对手同样需要巨大功耗和冷却基础设施[8] - 超大规模企业为降低对通用GPU依赖,转向定制化应用特定集成电路(ASIC),如谷歌TPU、AWS Trainium/Inferentia、微软Maia和Meta MTIA,实现更高能效[10][11][12][13] 数据中心能耗结构与分布 - 现代数据中心服务器计算负载占总能耗约60%,随着芯片密度增加,该比例持续上升[18] - 冷却和环境控制是数据中心效率最大变量,占电力消耗7%-30%,超大规模数据中心通过热通道封闭、自由冷却和直插液冷技术将需求控制在7%低水平[19][20] - 存储系统、网络设备和一般基础设施各占约5%能耗,但AI训练数据集存储需求绝对值持续增长[23] 全球数据中心能耗现状与预测 - 2024年全球数据中心耗电量达415太瓦时,相当于法国全年用电量,占全球电力消耗1.5%[28] - 基准情景下,2030年数据中心耗电量将翻倍至945太瓦时,占全球电力近3%,需增加相当于德国当前电网的发电容量[30] - 若AI采用加速且无约束,“起飞”情景下2035年耗电量可能达1700太瓦时,占全球电力4.5%,相当于印度能源足迹[31] 能源结构构成与区域差异 - 煤炭仍是数据中心最大单一电力来源,占全球需求约30%,中国数据中心70%电力依赖煤炭[41][42][43] - 天然气满足全球数据中心26%需求,在美国占比超40%,因其可调度性保障99.999%可靠性标准[44][45][46] - 可再生能源目前供应27%数据中心电力,年增长率22%,预计到2030年满足新增需求50%[47][48] 区域市场特征与发展动态 - 美国是数据中心消费领导者,2024年人均消费540千瓦时,2030年预计达1200千瓦时,占美国家庭年用电量10%[53] - 中国数据中心耗电量预计到2030年增长175太瓦时,增幅170%,通过“东数西算”战略将计算枢纽西迁至可再生能源丰富地区[56][57][58] - 欧洲数据中心耗电量预计增长45太瓦时,增幅70%,欧盟能源效率指令推动85%电力来自可再生能源和核能[59][60] 基础设施瓶颈与供应链风险 - 电网连接队列是行业主要瓶颈,数据中心建设周期2-3年而电网升级需5-7年,预计20%规划容量因电网限制延迟[67][68] - 关键矿物依赖造成安全漏洞,铜、锂、钴、镍需求激增,中国控制稀土元素采矿和加工主导地位[69][70][71] - 电力变压器短缺严重,交货期从12个月延长至3-4年,物理限制AI基础设施部署速度[74][75] AI能效潜力与减排贡献 - AI技术广泛应用可能到2035年每年减少32-54亿吨二氧化碳当量排放,数倍于数据中心直接排放量[80] - 在能源系统领域,AI通过超局部精准预测天气和需求波动,优化电网实时平衡,减少备用化石能源依赖[85] - 制造业通过AI视觉检测缺陷和优化供应链,可实现约8%节能;运输业通过路线优化和队列行驶显著降低燃料消耗[85]
从台湾供应链视角看全球半导体展望-SEMICON Taiwan 2025 Asia Pacific Investor Presentation Global semi outlook from Taiwan supply chain perspective
2025-09-09 02:40
全球半导体行业与AI服务器供应链关键要点 涉及的行业与公司 * 行业聚焦于全球半导体行业 特别是AI服务器供应链 包括云端AI资本支出 CoWoS先进封装 HBM内存以及定制化AI芯片(ASIC) [1][10][57][97][134] * 核心公司包括NVIDIA(主导AI GPU市场) TSMC(关键CoWoS产能提供者) 以及云服务提供商(CSP)如AWS Google Meta Microsoft 还有中国AI芯片厂商如华为[42][97][110][143][171] * 供应链涉及多家台湾ODM厂商如富士康(Foxconn) 纬创(Wistron) 广达(Quanta) 纬颖(Wiwynn) 英业达(Inventec)[58][66] 核心观点与论据 云端AI资本支出与半导体市场增长 * 摩根士丹利云端资本支出追踪器预估2026年十大上市全球云服务提供商(CSP)资本支出将达到5820亿美元 不含主权AI支出[13] * NVIDIA首席执行官预估2028年全球云端资本支出(含主权AI)将达到1万亿美元[15] * 受益于云端AI 全球半导体行业市场规模可能在2030年达到1万亿美元 AI半导体是主要增长动力[25][27] * 云端AI半导体总目标市场(TAM)在2025年可能增长至2350亿美元[25] NVIDIA GPU供应与需求预测 * TSMC预计在2025年生产510万颗芯片 而NVL72机柜出货量应达到3万台[42] * 对2025年GB200/300机柜产量转向更加乐观 预计约3.4万台 2026年至少6万台[49] * 看到来自Oracle对纬颖/广达的机柜需求增加 从8月开始[49] * 相信2025年第三季度机柜产量有望达到1.1-1.2万台 GB300机柜产量将从2025年第三季度末/第四季度初开始[49] 先进封装与制造产能 * CoWoS是主流的先进封装解决方案 随后将是SoIC[100] * TSMC可能将CoWoS产能扩大到2026年的9.3万片/月(93kwpm) 鉴于NVL72服务器机柜的瓶颈[105] * 全球CoWoS需求从2023年的11.7万片增长到2026年的100.4万片[110] * NVIDIA在2025年占据CoWoS产能分配的63%[110] * AI计算晶圆消耗在2025年可能达到150亿美元 NVIDIA占大部分[115] HBM内存需求 * 2025年HBM消耗量可能达到160亿Gb(15,578 mn Gb)[119][122] * NVIDIA在2025年消耗大部分HBM供应[121] 定制化AI芯片(ASIC)发展趋势 * 定制化AI芯片增长将超过通用芯片 定制化AI ASIC在2025年代表约210亿美元[139] * 增长前景 定制化AI半导体2023-30年复合年增长率39%[84][224] * 互联网公司开发云端AI定制芯片 Google TPU进入第六代 AWS AI训练解决方案Trainium AWS AI推理解决方案Inferentia Meta MTIA v1采用RISC-V核心 Tesla推出Dojo芯片 Habana开发Gaudi芯片[143][145] * AWS Trainium3将很快进入TSMC 3nm生产[147] 中国AI半导体需求与供应 * 预测前六大公司资本支出同比增长62% 达到3730亿人民币[162] * 中国AI应用在增长 2030年来自中国AI提升的总消费者使用量达到5560亿人民币[167] * 中国GPU自给率在2024年为34% 预计到2027年达到39%[178] * 预计中国云端AI总目标市场(TAM)在2027年达到480亿美元[180] * 本地GPU收入可能增长到1360亿人民币(2027年) 由中芯国际领先节点产能推动[182] 技术发展与性能比较 * TSMC的3nm以下在逻辑晶体管密度方面领先行业同行 每个节点迁移的每瓦性能(能效)可提高15%-20%[127] * 从感知AI到物理AI的趋势 生成式AI的计算需求呈指数增长[88][92] * 提供了NVIDIA AI GPU与Google TPU性能(INT8 TOPS)比较 以及主要AI GPU和ASIC的规格和成本比较[153][155] 其他重要内容 供应链与设计变更 * AI GPU服务器主板级检查(纬创)与NVIDIA GPU收入相关 是NVIDIA季度收入的良好指标[44] * GB300设计变更 – 回归Bianca设计 对连接器厂商Lotes和FIT负面 对PCB厂商Unimicron正面 对组装厂商纬创轻微负面[51] 投资风险与限制因素 * 增长限制包括 预算 能源 产能 监管[71][233] * 半导体解决方案包括 摩尔定律 CoWoS/SoIC HBM CPO 定制芯片[71][233] * 美国行政命令14032和出口管制参考 美国人士可能被禁止购买本报告提及实体的某些证券[3][4] 市场周期与库存 * 逻辑半导体Foundry利用率在2025年上半年为70-80% 尚未完全恢复[226] * 半导体供应链库存天数在2025年第二季度下降[227] * 排除NVIDIA的AI GPU收入 非AI半导体增长缓慢 2024年仅同比增长10%[231] 性能对比与中国市场 * 华为CloudMatrix 384 A3 SuperPod与NVIDIA NVL72的对比[188] * NVIDIA可供中国市场的芯片规格 包括L40S RTX 6000 Ada H20 RTX Pro 6000[193] * RTX Pro 6000系列产品均具有更好的FP8性能 而H20拥有更大的内存带宽[190][191]
摩根士丹利:全球科技-AI 供应链ASIC动态 -Trainium 与 TPU
摩根· 2025-06-19 09:46
报告行业投资评级 - 行业评级为In-Line,即分析师预计其行业覆盖范围在未来12 - 18个月的表现将与相关广泛市场基准保持一致 [8] 报告的核心观点 - 英伟达在GPU领域仍是美国半导体行业首选,但AI ASIC供应链存在投资机会,重申对下游系统和上游半导体部分公司的买入评级 [1][7] - 全球半导体行业市场规模2030年或达1万亿美元,AI半导体是主要增长驱动力,预计AI半导体市场规模届时达4800亿美元,云AI ASIC市场或增长至500亿美元 [21] - 大型云服务提供商有能力持续投资AI数据中心,预计2025年美国前四大超大规模企业运营现金流达5500亿美元,折旧占总费用比例上升,平均AI资本支出/息税折旧摊销前利润约为50% [58][59] 根据相关目录分别进行总结 识别AI ASIC供应链潜在机会 - 上游半导体中,台积电、爱德万测试、京元电子和日月光是关键代表;AWS Trainium 2由力成科技子公司测试,Trainium 3测试预计转至京元电子,测试解决方案由爱德万测试和泰瑞达竞争 [10] - 全球ASIC关键买入评级公司包括下游系统硬件的亚旭电子、纬颖科技、 Bizlink和金器工业,以及上游半导体的台积电、博通、阿尔卑斯、联发科、爱德万测试、京元电子、超微半导体和日月光 [11] 英伟达GPU竞争下的AI ASIC设计活动 - AWS Trainium方面,阿尔卑斯2月完成Trainium 3设计流片,5月晶圆产出,有较高机会赢得2nm Trainium 4;阿斯泰拉实验室和阿尔卑斯在连接芯片设计上合作,有助于其竞争下一代XPU ASIC项目 [3][7] - Google TPU方面,铁杉(TPU v7p)2025年上半年量产,博通可能流片另一款3nm TPU(可能是v7e),部分芯片产出在2025年底;联发科可能在8月中旬流片3nm TPU(可能是v8p),2026年下半年量产 [4][7] - Meta MTIA方面,7月或有MTIAv3初步销量预测,台湾供应链考虑为MTIAv4采用更大封装用于多个计算芯片 [5] 全球AI ASIC市场规模分析 - 全球半导体行业市场规模2030年或达1万亿美元,AI半导体是主要增长驱动力,预计AI半导体市场规模达4800亿美元,其中云AI半导体3400亿美元,边缘AI半导体1200亿美元,云AI ASIC市场或增长至500亿美元 [21] - 2025年AI服务器总可寻址市场约1990亿美元,英伟达CEO预计2028年全球云资本支出达1万亿美元,这是云AI半导体的关键潜在市场 [26] AI芯片供应指标:台积电CoWoS分配假设 - 供应链服务器机架产出逐渐改善,预计台积电2025年Blackwell芯片产出(按CoWoS - L产能计算)与AI资本支出衡量的“需求”更匹配,但在产品周期前几个季度芯片产出会超过NVL72服务器机架组装,产生芯片库存 [34] - 维持2025年台积电39万片CoWoS - L的预测,预计2026年云AI半导体同比增长31%,假设下游原始设备制造商在2026年上半年消化芯片产出,年底CoWoS估计为9万片/月 [35] 全球AI资本支出更新 - 现金流分析支持大型云服务提供商资本支出持续上升的预期,摩根士丹利预测2025年美国前四大超大规模企业运营现金流达5500亿美元,有能力持续投资AI数据中心 [58] - 预计折旧占数据中心客户总费用的比例将继续上升,2025年达到10 - 14%,2025年平均AI资本支出/息税折旧摊销前利润约为50% [59] AI GPU和ASIC租赁价格跟踪 - 英伟达4090和5090显卡零售价略有下降,但中国AI推理需求仍然强劲 [73] AI半导体 - 市盈率倍数、收入敞口、销售跟踪 - AI半导体市盈率倍数趋势显示,GP GPU(英伟达)、替代AI半导体和AI半导体推动者的市盈率倍数有所变化 [82] - AI芯片季度收入持续增加,英伟达和AMD的数据中心/高性能计算半导体收入呈上升趋势 [83][84] 关键特色报告 - 涵盖多篇关于AI供应链的报告,涉及服务器机架、订单情况、需求与供应、CoWoS预测等方面 [94][95] 关键上游AI供应链公司 - 台积电2026年晶圆价格上涨和强劲AI需求可能抵消外汇影响,评级为买入 [96] - 联发科TPU需求和进度应好于担忧,评级为买入,目标价维持在新台币1888元 [96][97] 联发科分析 - 预计联发科凭借天玑9400旗舰片上系统在高端智能手机市场获得份额,2025 - 2027年前景好于担忧,库存天数下降,表明水平健康 [110] - 考虑到联发科有很高可能性赢得2nm TPU项目,将其剩余收益模型中的中期增长率从8%提高到8.5%,目标价维持在新台币1888元 [97] - 因新台币近期大幅升值,下调2025和2026年营收预测6 - 7%,2027年营收预测下调3%,每股收益下调幅度大于营收 [100][101]