3DGS

搜索文档
仿真专场!一文尽览神经渲染(NERF/3DGS)技术在具身仿真框架Isaac Sim中的实现
具身智能之心· 2025-09-28 01:05
神经渲染技术在仿真领域的应用 - 神经渲染技术(NERF/3DGS)通过神经网络表达空间,在新视角合成方面表现优越,直击辅助驾驶和具身智能仿真中传感器仿真的痛点,可解决传统计算机图形学渲染图像缺乏真实性的问题,广泛应用于算法闭环测试和训练 [3] - 现有研究围绕NERF和3DGS技术开发面向闭环测试的仿真框架,但完全新开发仿真框架工作量巨大,因此另一种思路是将训练好的NERF/3DGS模型嵌入现有仿真软件框架,以利用现有3D数字资产和算法接口工具链 [3] 技术集成与工具支持 - LumaAI的3DGS插件可将高斯点云ply插入基于Unreal的CARLA游戏引擎,而NVIDIA的Isaac Sim仿真软件也已支持神经渲染技术,允许插入3DGS模型 [4] - NVIDIA开源项目提出三维高斯渲染方法,可输出适用于Isaac Sim的usdz模型,3DGRUT工具支持将其他3DGS方法生成的高斯点云ply转化为usdz模型 [4] - 3DGRUT生成的usdz模型文件包含default.usda、gauss.usda等描述文件和nurec格式模型文件,可直接解压使用 [4] Isaac Sim中的操作流程 - Isaac Sim的神经渲染功能NuRec需5.0.0以上版本(Omniverse Kit 107.3以上),安装后可通过Content栏导航到usdz模型解压文件夹,将gauss.usda拖动或插入Stage,即可显示三维高斯模型 [5] - 导入的3DGRUT模型仅具备视觉特征,需通过2DGS等方法提取场景mesh(ply格式),并调整mesh的scale和位姿以匹配usdz渲染结果 [6][7] - 需将usdz模型与mesh绑定,在gauss的Property中选择Raw USD Properties,找到proxy并添加Target,选择mesh对象,最后勾选omni:nurec:useProxyTransform特性以实现对齐 [7] 物理属性与交互功能 - 需为mesh添加物理属性,右键选择mesh,在Add中选择Physics->Collider,以增加碰撞属性,避免物体穿透问题 [8] - 在mesh的Property中勾选Matte Object,配合DomeLight光照实现光影交互效果,同时可添加OmniPBR材料并将Reflectivity中的Specular降至最低,减少不必要的反光 [8] - 添加Rigid Body with Colliders Preset属性后,可进一步设置质量等物理属性,使模型与仿真环境中的其他物体(如球体、地面)产生碰撞交互 [14] 动态物体与场景构建 - 通过3DGS方法训练场景(如mipnerf360的kitchen),使用在线工具编辑ply文件提取特定物体(如乐高推土机),再经3DGRUT转化为usdz模型,可实现动态物体导入 [11][13] - 将动态物体(如推土机)放入其他神经渲染场景(如garden或room),可实现模型间及模型与原生物体的动态交互,显存占用较低,在3090显卡上fps表现良好 [15][17] 未解决的问题与挑战 - 神经渲染模型间的光影交互关系尚未完全解决,例如推土机未在神经渲染背景中投下阴影 [18] - 仿真环境测试具体算法的效果尚未探究,例如在room环境中让VLA算法执行"捡起地毯上的乐高推土机"指令的可行性 [19] - 需解决如何快速提供rgb图像外的真值信息(如图像分割、对象标注标签),以及如何获取动态物体的物理属性真值(如硬度、摩擦系数、质量) [19] - 需进一步提升计算效率,以支持更大规模神经渲染场景和更多对象的实时仿真 [19]
三维重建综述:从多视角几何到 NeRF 与 3DGS 的演进
自动驾驶之心· 2025-09-22 23:34
三维重建技术演进综述 - 三维重建是计算机视觉与图形学的交叉核心,作为虚拟现实、增强现实、自动驾驶、数字孪生等前沿应用的数字底座 [5] - 以神经辐射场(NeRF)和三维高斯抛雪球(3DGS)为代表的新视角合成技术,使重建质量、速度、动态适应性同时跃升 [5] - 技术演进从传统多视角几何(SfM→MVS)到NeRF与3DGS,为数字孪生、智慧城市、元宇宙等领域提供技术演进全景图 [5] 应用需求驱动技术革新 - 城市级数字孪生需求公里级范围、厘米级精度、分钟级更新 [6] - 自动驾驶仿真需求动态交通流、实时语义、可编辑车道 [6] - AR/VR社交需求轻终端、大于90 FPS、照片级真实感 [6] - 工业数字工厂需求弱纹理、反光、复杂拓扑完整建模 [6] - 传统先几何后纹理管线无法满足新需求,NeRF与3DGS通过可微渲染统一学习几何-纹理-光照,实现从离线静态到实时动态的突破 [6] 传统多视角几何重建(SfM→MVS) - 理论基石包括对极几何x'^T F x = 0、三角测量X = argmin(∑‖π(P_i,X)−x_i‖^2)和束调整min ∑‖x−π(P,X)‖^2 + λ‖P−P_0‖^2 [9][10] - 成熟工具链包括COLMAP(学术最常用,CPU优化)、OpenMVG(模块化,适合算法研究)、Agisoft Metashape(商业级,支持无人机影像)和ContextCapture(Bentley城市级解决方案) [11] - 存在五大痛点:数据饥渴需大于70%航向重叠加60%旁向重叠、弱纹理空洞(玻璃、白墙、水面、天空)、光照敏感导致阴阳面色差和纹理接缝明显、动态失效导致行人车辆重影/鬼影、编辑困难改一棵树要重跑全流程 [13][15] NeRF隐式神经辐射场(2020-2024) - 基础框架将场景建模为连续5D函数F_Θ:(x,y,z,θ,φ)→(c,σ),通过体渲染积分得到像素颜色 [13][14] - 质量提升路线包括Mip-NeRF(锥体追踪+集成位置编码解决锯齿混叠,训练时间×2)、NeRF-W(外观嵌入+可变光照解决天气/曝光变化,推理需调latent)、NeRF++(反向球面背景+双层场景解决远景退化,参数量+30%)、NeRFLiX(退化模拟器+视角混合解决伪影噪声,需合成数据预训练)、BAD-NeRF(运动模糊物理模型解决模糊输入鲁棒,需已知模糊核)、UHDNeRF(隐式体+稀疏点云高频实现8K超高清,显存增加) [17] - 效率优化路线包括InstantNGP(多分辨率哈希编码实现5秒至1分钟训练时间、5 FPS渲染、1.2 GB显存)、TensoRF(CP分解+低秩近似实现10分钟训练、10 FPS、300 MB显存)、NSVF(稀疏体素八叉树实现30分钟训练、15 FPS、500 MB显存)、Zip-NeRF(抗锯齿网格采样实现20分钟训练、20 FPS、400 MB显存)、Lightning NeRF(点云先验初始化实现8分钟训练、10 FPS、600 MB显存) [18] - 稀疏视角合成(小于10张图)方法包括FreeNeRF(频率正则+遮挡正则实现DTU 3-view PSNR 19.92,零额外开销)、FlipNeRF(反射射线过滤实现PSNR 19.55,减少漂浮物)、MixNeRF(混合密度+深度估计实现PSNR 18.95,提升几何)、HG3-NeRF(几何-语义-光度分层实现PSNR 19.37,需语义标签) [20] - 动态场景(视频输入)方法包括Deformable-NeRF(变形场Ψ(x,t)实现D-NeRF PSNR 29.8,正则化扭曲)、NSFF(场景流+静态/动态分解实现PSNR 31.5,可解释运动)、DNeRF(时间编码γ(t)实现PSNR 29.6,无需额外mask)、NeRFPlayer(静态+变形+新区域实现PSNR 30.2,流式播放)、Tensor4D(4D张量分解实现PSNR 31.0,内存下降50%) [21] 3DGS三维高斯溅射(2023-2025) - 基础公式将场景表示为3D高斯集合G={μ_i,Σ_i,α_i,SH_i}_{i=1}^M,投影到图像平面后按深度排序做α-混合C=∑_{i∈N}c_iα'_i∏_{j=1}^{i-1}(1-α'_j) [22][23] - 渲染质量优化方法包括Mip-Splatting(3D/2D Mip滤波实现抗锯齿,LPIPS下降10%)、Scaffold-GS(锚点生长-剪枝实现内存下降79%,覆盖提升)、GaussianPro(渐进传播+深度一致实现低纹理PSNR提升1.7 dB)、GSDF(高斯+SDF双分支实现几何误差下降30%)、SuperGS(粗到细+梯度引导分裂实现4K超分实时) [25] - MipNeRF360对比显示3DGS的PSNR 27.21、SSIM 0.815、LPIPS 0.214、FPS 134、内存734 MB;GSDF的PSNR 29.38、SSIM 0.865、LPIPS 0.185;Scaffold-GS的PSNR 28.84、SSIM 0.848、LPIPS 0.220、FPS 102、内存156 MB;SuperGS的PSNR 29.44、SSIM 0.865、LPIPS 0.130、FPS 47、内存123 MB [26] - 效率再升级方法包括LightGaussian(蒸馏+量化+伪视角实现15倍压缩,200 FPS)、CompGS(K-means+游程编码实现存储下降80%)、EAGLES(轻量化编码实现显存下降70%)、SuGaR(表面网格提取实现编辑友好,Poisson重建)、Distwar(寄存器级并行实现GPU原子操作下降60%) [27][28] - 稀疏视角重建(小于10张图)方法包括FSGS(单目深度+邻域上采样实现200 FPS,需预训练DepthNet)、SparseGS(扩散模型补全实现实时360°,生成伪标签)、LM-Gaussian(大模型视觉先验实现迭代细化,视频扩散)、MCGS(多视角一致性修剪实现内存下降50%,渐进剪枝) [29] - 动态重建(视频)方法包括Deformable 3D-GS(变形场实现D-NeRF PSNR 39.51,时序正则)、4D-GS(神经体素+MLP实现PSNR 34.05,分解4D特征)、Gaussian-Flow(双域变形实现PSNR 34.27,显式运动向量)、DN-4DGS(去噪网络实现PSNR 25.59,时空聚合) [30] 三代技术横向对比 - 核心表征:SfM/MVS为点云+Mesh,NeRF为隐式σ(x)+c(x),3DGS为显式高斯集合 [31] - 几何精度:SfM/MVS★★★★☆,NeRF★★★☆☆,3DGS★★★☆☆ [31] - 照片真实感:SfM/MVS★★☆☆☆,NeRF★★★★★,3DGS★★★★☆ [31] - 训练时间:SfM/MVS为小时级,NeRF为小时至天级,3DGS为分钟级 [31] - 渲染FPS:SfM/MVS小于1,NeRF小于1,3DGS为50-300 [31] - 动态扩展:SfM/MVS不支持,NeRF需变形场,3DGS支持时序高斯 [31] - 编辑性:SfM/MVS极难,NeRF隐式不可见,3DGS支持移动/删除/增改 [31] - 硬件门槛:SfM/MVS只需CPU,NeRF需8个高端GPU,3DGS只需1个消费GPU [31] - 代表落地:SfM/MVS用于测绘、文保,NeRF用于影视、直播,3DGS用于AR/VR、自动驾驶 [32] 未来5年技术雷达 - 混合表征:NeRF+3DGS+SDF统一框架,光滑表面用SDF,高频细节用高斯,空洞用NeRF补全 [33] - 端侧实时:INT4量化+TensorRT/ONNX实现手机30 FPS重建 [33] - 生成式重建:Diffusion先验+3DGS实现单图/文本生成可驱动3D资产 [33] - 物理-语义联合:引入光照模型、重力、语义标签实现一键可编辑城市场景 [33] - 多模态融合:LiDAR深度、事件相机、IMU、Thermal同步实现SfM-free鲁棒重建 [33] - 三维重建将走向人人可用、处处实时的普适计算时代,让每部手机、每台车、每副AR眼镜都拥有实时数字化的瑞士军刀 [34]
那些号称端到端包治百病的人,压根从来没做过PnC......
自动驾驶之心· 2025-09-16 23:33
端到端自动驾驶技术发展现状 - 国内新势力车企正在推进VLA(Vision-Language-Action)技术的落地和优化 而另一部分企业则聚焦WA(World Model)路线 更多车企和Tier1供应商仍处于端到端技术攻坚阶段[2] - 端到端系统通过输入传感器原始数据直接输出控制信号或自车轨迹 代表性算法包括UniAD和Sparse系列[3] - 端到端本质是实现感知信息的无损传递 解决模块化方法中人工定义感知结果无法覆盖开集场景的问题 目前工业界普遍采用模仿学习方法进行优化[4] 端到端技术挑战与行业共识 - 端到端系统虽提高性能上限但下限稳定性不足 实际落地仍需传统规控方法兜底 learning-based输出轨迹仍需经过传统PnC处理[5] - 行业共识是自动驾驶从规则驱动转向认知驱动 但端到端技术距离成熟仍有较长距离 需要更多时间沉淀[5] - 车企为突破感知模型迭代瓶颈 积极布局VLA和WA技术路线 但需理性看待端到端替代传统规控的局限性[5] 自动驾驶技术社区生态 - 自动驾驶之心知识星球社区规模已超4000人 覆盖超300家机构与自动驾驶公司 目标两年内达到近万人规模[8][102] - 社区整合40+技术方向学习路线 包括VLA、端到端、多模态大模型等前沿领域 并提供与一线产业界/学术界大佬的直接交流渠道[8][9][17] - 社区提供岗位内推机制 成员来自蔚小理、地平线、华为、英伟达等头部企业 以及国内外顶尖高校实验室[17] 技术资源体系 - 社区汇总近60+自动驾驶数据集 涵盖VLM预训练/微调/思维链/强化学习等类型 并整合3D目标检测/BEV感知/Occupancy等开源项目[37][53][55] - 提供七大福利视频教程 内容覆盖世界模型、自动驾驶大模型、Transformer等 已举办超百场专业技术直播[88][91] - 详细梳理端到端自动驾驶技术体系 包括一段式/二段式量产方案、VLA算法及里程碑方法 兼顾学术界与工业界需求[39][47]
肝了几个月,新的端到端闭环仿真系统终于用上了。
自动驾驶之心· 2025-07-03 12:41
技术突破与创新 - 神经场景表征发展中出现Block-NeRF等方法,但无法处理动态车辆,限制了自动驾驶环境仿真的应用 [2] - 浙大提出Street Gaussians技术,基于3DGS开发动态街道场景表示,解决训练成本高和渲染速度慢的问题,实现半小时内训练并以135 FPS速度渲染1066×1600分辨率图像 [2] - 动态场景表示为静态背景和移动车辆的点云组合,每个点分配3D高斯参数(位置、不透明度、协方差)和球面谐波模型表示外观 [3][4] - 背景模型使用世界坐标系点云,每个点包含3D高斯参数(协方差矩阵、位置向量)、不透明度、球面谐波系数和3D语义概率 [8] - 物体模型引入可学习跟踪车辆姿态,局部坐标系定义的位置和旋转通过跟踪姿势转换到世界坐标系,并采用4D球谐函数解决移动车辆外观建模的存储问题 [11][12] - 使用LiDAR点云初始化场景表示,对稀疏区域结合SfM点云补充,物体模型初始化采用3D边界框内聚合点或随机采样 [17] 算法优化与效果 - 4D球谐函数有效消除动态场景渲染中的伪影,提升外观建模准确性 [16] - 静态场景重建通过体素下采样和可见性过滤优化点云初始化,动态场景重建利用可学习姿态参数解决跟踪噪声问题 [17][11] - 自动驾驶场景重建实现动静态物体分解,支持场景编辑和闭环仿真应用 [43] 行业应用与课程 - 3DGS技术已衍生多个子方向(4D GS、场景编辑等),在自动驾驶仿真闭环中具有重要应用价值 [23][43] - 业内推出首门3DGS全栈实战课程,覆盖视觉重建基础、静态/动态场景重建、自动驾驶场景优化等模块,结合代码实战与论文带读 [26][33][35][37][39][41][43][45][47] - 课程由头部自动驾驶公司算法专家设计,目标培养学员掌握3DGS核心理论、前沿算法及实际应用能力 [50][53][54]