富荣沪深300增强A
搜索文档
因子周报:本周Beta和高动量风格显著-20251213
招商证券· 2025-12-13 14:43
量化模型与因子总结 量化模型与构建方式 1. **模型名称**:中性约束条件下最大化因子暴露组合[22] **模型构建思路**:在构建单因子投资组合时,采用一种优化方法,在确保投资组合相对基准指数在行业和风格暴露保持中性的基础上,最大化目标因子在组合中的暴露[22]。 **模型具体构建过程**:模型的具体构建方法在附录中提及,但正文未详细展开。其核心思想是通过优化求解,在满足行业和风格因子暴露中性(即组合在这些维度上的暴露与基准指数一致或为零)的约束条件下,使投资组合对目标因子的暴露达到最大[22]。 量化因子与构建方式 风格因子(共10个大类)[16] 构建思路:参考BARRA因子模型构建,以捕捉A股市场的风格变化[16]。大类风格因子通过细分因子合成[16]。 1. **因子名称**:估值因子 **因子具体构建过程**:估值因子 = BP。其中BP(Book to Price)为细分因子,构造方式为:归母股东权益 / 总市值[17]。 2. **因子名称**:成长因子 **因子具体构建过程**:成长因子 = (SGRO + EGRO) / 2[17]。 * 细分因子SGRO(Sales growth):过去五个财年年报的每股营业收入按时间进行回归,将回归系数(斜率)除以每股营业收入的平均值,得到营业收入增长率SGRO[17]。 * 细分因子EGRO(Earnings growth):过去五个财年年报的每股归母净利润按时间进行回归,将回归系数(斜率)除以每股归母净利润的平均值,得到归母净利润增长率EGRO[17]。 3. **因子名称**:盈利因子 **因子具体构建过程**:盈利因子 = (ETOP + CETOP) / 2[17]。 * 细分因子ETOP(Earnings-to-price ratio):归母净利润TTM / 总市值[17]。 * 细分因子CETOP(Cash earnings-to-price ratio):经营活动产生的现金流量净额TTM / 总资产[17]。 4. **因子名称**:规模因子 **因子具体构建过程**:规模因子 = LNCAP。其中LNCAP(Natural log of market cap)为细分因子,构造方式为:总市值的对数[17]。 5. **因子名称**:Beta因子 **因子具体构建过程**:Beta因子 = BETA。其中BETA为细分因子,构造方式为:将个股过去252个交易日的日收益率与中证全指日收益率进行半衰指数加权回归,半衰期为63个交易日。最终取回归系数作为BETA[17]。 6. **因子名称**:动量因子 **因子具体构建过程**:动量因子 = RSTR。其中RSTR(Relative strength)为细分因子,构造方式为:过去504个交易日个股累计收益率,不含最近21个交易日。其中收益率序列使用半衰指数加权,半衰期为126个交易日[17]。 7. **因子名称**:流动性因子 **因子具体构建过程**:流动性因子 = (STOM + STOQ + STOA) / 3[17]。 * 细分因子STOM(Share turnover, one month):个股过去1个月的换手率加总,之后取对数[17]。 * 细分因子STOQ(Average share turnover, trailing 3 months):个股过去3个月STOM的均值[17]。 * 细分因子STOA(Average share turnover, trailing 12 months):个股过去12个月STOM的均值[17]。 8. **因子名称**:波动性因子 **因子具体构建过程**:波动性因子 = (DASTD + CMRA + HSIGMA) / 3[17]。 * 细分因子DASTD(Daily standard deviation):过去250个交易日个股相对于所有股票等权指数的超额收益率的标准差。其中计算标准差时使用半衰指数加权,半衰期为40个交易日[17]。 * 细分因子CMRA(Cumulative range):计算个股过去12个月内的累计对数收益率,将累计最高收益与累计最低收益做差得到CMRA[17]。 * 细分因子HSIGMA(Historical sigma):计算BETA时残差的标准差[17]。 9. **因子名称**:非线性市值因子 **因子具体构建过程**:非线性市值因子 = NLSIZE。其中NLSIZE(Non-linear Size)为细分因子,构造方式为:将股票总市值对数的三次方与对数市值进行加权最小二乘回归,其中权重为对数市值的平方根,最终取回归残差作为NLSIZE。总市值越大或越小的股票NLSIZE越大,中市值股票NLSIZE小[17]。 10. **因子名称**:杠杆因子 **因子具体构建过程**:杠杆因子 = (MLEV + DTOA + BLEV) / 3[17]。 * 细分因子MLEV(Market leverage):非流动负债 / 总市值[17]。 * 细分因子DTOA(Debt to assets):总负债 / 总资产[17]。 * 细分因子BLEV(Book leverage):非流动负债 / 归属母公司股东权益[17]。 选股因子(共53个)[21] 构建思路:构建了53个常用的选股因子,涵盖了估值、成长、质量、规模、反转、动量、流动性、波动性、分红、公司治理以及技术等多个方面[21]。在计算全市场股票池因子表现时,会对每个单因子进行中性化处理,消除其与行业、风格(规模、估值、成长)因子的相关性[47]。 **因子列表及具体构建过程如下表所示**[22]: | 因子类别 | 因子名称 | 构造方式 | 参考方向 | | :--- | :--- | :--- | :--- | | 估值 | BP | 归属母公司股东权益/总市值 | 正向[22] | | | 单季度EP | 单季度归母净利润/总市值 | 正向[22] | | | EP_TTM | 归母净利润TTM/总市值 | 正向[22] | | | 单季度SP | 单季度营业收入/总市值 | 正向[22] | | | SP_TTM | 营业收入TTM/总市值 | 正向[22] | | | 单季度CFEV | 单季度经营活动产生的现金流量净额/(市值 + 短期借款 + 长期借款 + 应付债券 - 货币资金) | 正向[22] | | | CFEV_TTM | 经营活动产生的现金流量净额TTM/(市值 + 短期借款 + 长期借款 + 应付债券 - 货币资金) | 正向[22] | | 成长 | 单季度净利润同比增速 | 单季度归母净利润同比增长率 | 正向[22] | | | 单季度营业收入同比增速 | 单季度营业收入同比增长率 | 正向[22] | | | 单季度营业利润同比增速 | 单季度营业利润同比增长率 | 正向[22] | | | 标准化预期外盈利 | (当前季度归母净利润 -(去年同期单度归母净利润+过去8个季度单季归母净利润同比增长均值))/ 过去8个季度的单季度归母净利润同比增长值的标准差 | 正向[22] | | | 标准化预期外收入 | (当前季度营业收入 -(去年同期单度营业收入+过去8个季度单季度营业收入同比增长均值))/ 过去8个季度的单季营业收入同比增长值的标准差 | 正向[22] | | | 单季度ROE同比 | ROE单季度同比变化 | 正向[22] | | | 单季度ROA同比 | ROA单季度同比变化 | 正向[22] | | 质量 | 单季度ROE | 单季度归母净利润/归属母公司股东权益 | 正向[22] | | | 单季度ROA | 单季度归母净利润/总资产 | 正向[22] | | | 单季度毛利率 | (单季度营业收入-单季度营业成本)/单季度营业收入 | 正向[22] | | | 单季度营业利润率 | 单季度营业利润/单季度营业收入 | 正向[22] | | | 单季度净利润率 | 单季度归母净利润/单季度营业收入 | 正向[22] | | | 盈余质量 | (经营活动现金流量净额-营业利润) /总资产 | 正向[22] | | | 流动比率 | 流动资产/流动负债 | 正向[22] | | 规模 | 对数市值 | 总市值的对数 | 负向[22] | | 反转 | 20日反转 | 个股过去20个交易日收益率 | 负向[22] | | | 60日反转 | 个股过去60个交易日收益率 | 负向[22] | | 动量 | 60日动量 | 个股过去60个交易日(排除近20日)收益率 | 正向[22] | | | 240日动量 | 个股过去240个交易日(排除近20日)收益率 | 正向[22] | | | 盈余公告前隔夜动量 | 个股盈余公告前20个交易日的隔夜收益 | 正向[22] | | | 盈余公告次日开盘跳空超额 | 个股盈余公告次日开盘价/昨日收盘价-中证全指次日开盘价/昨日收盘价 | 正向[22] | | 流动性 | 20日换手率 | 个股过去20个交易日换手率的平均值 | 负向[22] | | | 60日换手率 | 个股过去60个交易日换手率的平均值 | 负向[22] | | | 20日换手率波动 | 个股过去20个交易日换手率的标准差 | 负向[22] | | | 60日换手率波动 | 个股过去60个交易日换手率的标准差 | 负向[22] | | | 20日非流动性冲击 | 个股过去20个交易日的收益率绝对值/过去20日成交额的均值 | 正向[22] | | | 60日非流动性冲击 | 个股过去60个交易日的收益率绝对值/过去60日成交额的均值 | 正向[22] | | 波动性 | 20日收益率标准差 | 个股过去20个交易日的日收益率标准差 | 负向[22] | | | 60日收益率标准差 | 个股过去60个交易日的日收益率标准差 | 负向[22] | | | 20日特异度 | 个股过去20个交易日的日收益与Fama-French三因子回归的拟合度 | 负向[22] | | | 60日特异度 | 个股过去60个交易日的日收益与Fama-French三因子回归的拟合度 | 负向[22] | | | 20日三因子模型残差波动率 | 个股过去20个交易日的日收益对Fama-French三因子回归的残差的标准差 | 负向[22] | | | 120日三因子模型残差波动率 | 个股过去120个交易日的日收益对Fama-French三因子回归的残差的标准差 | 负向[22] | | | 240日三因子模型残差波动率 | 个股过去240个交易日的日收益对Fama-French三因子回归的残差的标准差 | 负向[22] | | 分红 | 股息率 | 最近4个季度分红/总市值 | 正向[22] | | 公司治理 | 前五大股东持股比例 | 前五大股东持股比例合计 | 正向[22] | | | 前十大股东持股比例 | 前十大股东持股比例合计 | 正向[22] | | 技术 | 20日成交额 | 过去20个交易日日均成交额 | 负向[22] | | | 60日成交额 | 过去60个交易日日均成交额 | 负向[22] | | | 60日偏度 | 过去60个交易日日度收益率数据计算的偏度 | 负向[22] | | | 240日偏度 | 过去240个交易日日度收益率数据计算的偏度 | 负向[22] | | | 20日成交量变异系数 | 过去20个交易日成交量的标准差 / 过去20个交易日成交量均值 | 负向[22] | | | 60日成交量变异系数 | 过去60个交易日成交量的标准差 / 过去60个交易日成交量均值 | 负向[22] | | | 20日成交量比率 | 过去20个交易日成交量均值/ 过去240个交易日成交量均值 | 负向[22] | | | 60日成交量比率 | 过去60个交易日成交量均值/ 过去240个交易日成交量均值 | 负向[22] | | | 120日成交量比率 | 过去120个交易日成交量均值/ 过去240个交易日成交量均值 | 负向[22] | 模型的回测效果 *注:报告中未提供“中性约束条件下最大化因子暴露组合”模型整体的综合回测指标(如年化收益、夏普比率等),仅提供了该模型框架下各单因子的超额收益表现。* 因子的回测效果 风格因子表现(近一周多空收益)[19] 1. Beta因子, 多空收益 4.54%[19] 2. 动量因子, 多空收益 4.34%[19] 3. 波动性因子, 多空收益 3.81%[19] 4. 规模因子, 多空收益 3.36%[19] 5. 流动性因子, 多空收益 1.59%[19] 6. 成长因子, 多空收益 1.15%[19] 7. 非线性市值因子, 多空收益 0.88%[19] 8. 盈利因子, 多空收益 0.61%[19] 9. 杠杆因子, 多空收益 -0.56%[19] 10. 估值因子, 多空收益 -3.71%[19] 选股因子表现(基于“中性约束条件下最大化因子暴露组合”) **以下为各股票池中,因子在“最近一周”窗口期的超额收益表现。** 沪深300股票池[24] 1. 标准化预期外盈利因子, 超额收益 0.87%[24] 2. 240日动量因子, 超额收益 0.78%[24] 3. 单季度净利润率因子, 超额收益 0.74%[24] 中证500股票池[28] 1. 单季度毛利率因子, 超额收益 1.49%[28] 2. 单季度营业利润率因子, 超额收益 1.26%[28] 3. 单季度净利润率因子, 超额收益 1.05%[28] 中证800股票池[33] 1. 单季度ROE因子, 超额收益 1.02%[33] 2. 盈余公告前隔夜动量因子, 超额收益 0.97%[33] 3. 标准化预期外盈利因子, 超额收益 0.94%[33] 中证1000股票池[38] 1. 单季度营业利润率因子, 超额收益 1.34%[38] 2. 单季度净利润率因子, 超额收益 1.25%[38] 3. 单季度营业利润同比增速因子, 超额收益 1.15%[38] 沪深300ESG股票池[42] 1. 标准化预期外盈利因子, 超额收益 0.96%[42] 2. 单季度营业利润同比增速因子, 超额收益 0.57%[42] 3. 单季度ROA因子, 超额收益 0.52%[42] 全市场股票池(近一周Rank IC)[46] 1. 单季度ROE因子, Rank IC 17.68%[46] 2. 单季度ROA因子, Rank IC 17.19%[46] 3. 单季度净利润率因子, Rank IC 16.25%[46]
权益因子观察周报第125期:上周估值因子表现较好,本年中证2000指数增强策略超额收益为23.32%-20251014
国泰海通证券· 2025-10-14 08:53
核心观点 - 上周(2025-10-09至2025-10-10)估值因子在主要宽基指数中表现突出,成为驱动指数增强策略超额收益的关键力量 [1] - 截至2025年10月10日,中证2000指数增强策略本年超额收益高达23.32%,显著高于其他宽基指数增强策略 [1][5] - 小盘风格指数(中证1000、中证2000)的增强产品本年超额收益普遍超过12%,明显优于大盘风格指数(沪深300、中证500)增强产品 [5] 公募指数增强基金表现 - 沪深300增强基金规模达772亿元,为各类宽基指数增强产品中规模最大,共有53只产品 [9] - 易方达沪深300精选增强A(010736.OF)本年收益32.31%,超额收益14.98%,在沪深300增强产品中排名第一 [10] - 鹏华中证500指数增强A(014344.OF)本年收益41.67%,超额收益12.46%,在中证500增强产品中表现最佳 [16] - 工银瑞信中证1000ETF增强(561280.SH)本年收益44.54%,超额收益18.09%,领跑中证1000增强产品 [21] - 汇添富国证2000指数增强A(019318.OF)本年收益46.5%,超额收益17.14%,在国证2000增强产品中排名第一 [26] 单因子表现 - 沪深300股票池内上周表现最好的单因子是BPROE分位数(2.41%)、单季度毛利润(2.3%)、单季度营业利润(2.1%) [36] - 中证500股票池内上周超额收益较好的因子是单季度EP倒数(1.69%)、BPROE分位数(1.54%)、单季度营业利润(1.46%) [37] - 中证1000股票池内市盈率(扣非)倒数因子上周超额收益达2.01%,单季度SP因子为1.95% [38] - 中证2000股票池内估值类因子表现强劲,市盈率(归母)倒数上周超额收益2.22%,单季度EP倒数达2.19% [39] - 全市场范围内,5分钟成交量偏度因子上周超额收益最高,达2.31%,市盈率(归母)倒数因子为2.27% [39] 大类因子表现 - 上周沪深300内大类因子表现前三为估值(2.6%)、市值(2.19%)、价量(2.15%) [45] - 中证500内表现较好的大类因子是估值(2.28%)、分析师(1.71%)、高频分钟(1.62%) [1] - 中证1000内估值因子表现最佳(2.52%),其次为市值(2.11%)和高频分钟(1.94%) [1] - 中证2000内估值因子超额收益达2.63%,高频分钟因子为2.18%,公司治理因子为1.89% [1] - 成长因子在沪深300股票池内本年表现突出,超额收益达26.03%,盈利因子为25.54% [45] 指数增强策略表现 - 沪深300指数增强策略本年收益22.81%,超额收益5.48%,超额最大回撤-3.15% [5] - 中证500指数增强策略本年收益30.56%,超额收益1.35%,超额收益最大回撤-5.01% [5] - 中证1000指数增强策略本年收益39.02%,超额收益12.56%,超额最大回撤-5.59% [5] - 中证2000指数增强策略表现最为亮眼,本年收益54.98%,超额收益23.32%,超额最大回撤-5.23% [5]
东方因子周报:Growth风格登顶,单季ROE因子表现出色-20250518
东方证券· 2025-05-18 14:43
根据研报内容,以下是量化模型与因子的详细总结: 量化因子与构建方式 风格类风险因子(DFQ-2020模型) 1. **Size因子** 构建思路:反映市值规模效应[14] 具体构建:总市值对数作为暴露值[14] 2. **Beta因子** 构建思路:衡量个股系统性风险[14] 具体构建:采用贝叶斯压缩后的市场Beta值[14] 3. **Trend因子** 构建思路:捕捉不同时间窗口的趋势效应[14] 具体构建: $$Trend_{120} = EWMA(halflife=20)/EWMA(halflife=120)$$ $$Trend_{240} = EWMA(halflife=20)/EWMA(halflife=240)$$[14] 4. **Volatility因子** 构建思路:衡量股票波动特征[14] 具体构建:包含5个子指标 - Stdvol:243天标准差 - Ivff:Fama-French三因子特质波动率 - Range:最高价/最低价-1 - MaxRet_6/MinRet_6:极端收益均值[14] 5. **Liquidity因子** 构建思路:反映交易活跃度[14] 具体构建: - TO:243天平均对数换手率 - Liquidity beta:个股与市场换手率的回归系数[14] 6. **Growth因子** 构建思路:衡量成长性[14] 具体构建: - Delta ROE:3年ROE变动均值 - Sales_growth:销售收入3年复合增速 - Na_growth:净资产3年复合增速[14] 多维度因子库 1. **估值类因子** - BP(账面市值比):净资产/总市值[18] - Quart_EP(单季市盈率倒数):单季归母净利润/总市值[18] - TTM_EP(滚动市盈率倒数):归母净利润TTM/总市值[18] 2. **成长类因子** - YOY_Quart_NP:单季净利润同比增速[18] - SUE(标准化预期外盈利): $$(单季实际净利-预期净利)/预期净利标准差$$[18] 3. **盈利类因子** - Quart_ROE:单季净资产收益率[18] - Quart_ROA:单季总资产收益率[18] 4. **分析师预期类因子** - FNP_QOQ_PERC_3M:预期净利润环比增幅[18] - UD_PCT:分析师上下调数量差占比[18] 5. **流动性类因子** - TURNOVER_1M:20日换手率均值[18] - ILLIQ_1M:20日涨跌幅绝对值/成交额的均值[18] 因子回测效果 沪深300样本空间 1. **一个月反转因子** 最近一周:0.74% 最近一月:1.85% 今年以来:6.04%[21] 2. **预期PEG因子** 最近一周:0.63% 最近一月:2.40% 今年以来:2.17%[21] 3. **单季ROE因子** 最近一周:0.42% 最近一月:1.22% 今年以来:2.63%[21] 中证500样本空间 1. **盈余公告开盘跳空超额因子** 最近一周:0.76% 最近一月:0.58% 今年以来:-0.23%[25] 2. **单季EP因子** 最近一周:0.66% 最近一月:-0.04% 今年以来:-0.03%[25] 中证全指样本空间 1. **单季ROE因子** 最近一周:1.46% 最近一月:1.95% 今年以来:1.37%[43] 2. **三个月反转因子** 最近一周:1.01% 最近一月:-0.09% 今年以来:2.38%[43] 模型构建方法 **MFE组合优化模型** 目标函数:最大化单因子暴露 约束条件包括: - 风格暴露限制:$$s_l \leq X(w-w_b) \leq s_h$$ - 行业偏离限制:$$h_l \leq H(w-w_b) \leq h_h$$ - 换手率约束:$$\Sigma|w-w_0| \leq to_h$$[55] 优化方法:线性规划求解[56]
东方因子周报:Liquidity风格登顶,单季ROE因子表现出色-20250511
东方证券· 2025-05-11 10:16
量化模型与构建方式 1. **模型名称**:东方A股因子风险模型(DFQ-2020) - **模型构建思路**:基于风格类风险因子构建多因子模型,用于解释股票收益的风险来源[14] - **模型具体构建过程**: - 包含10类风格因子(如Size、Beta、Trend等),每类因子由多个子因子合成[14] - 因子计算示例: - **Size因子**:总市值对数 - **Beta因子**:贝叶斯压缩后的市场Beta - **Trend因子**:通过指数加权移动平均比率计算,如 $$Trend\_120 = \frac{EWMA(halflife=20)}{EWMA(halflife=120)}$$ - **Volatility因子**:包含5个子因子,如过去243天的标准波动率、FF3特质波动率等[14] - **模型评价**:覆盖市场主要风险维度,因子定义清晰且具有经济逻辑 2. **MFE组合构建模型** - **构建思路**:通过组合优化最大化单因子暴露,同时控制行业、风格等约束[54] - **具体构建过程**: - 目标函数:最大化因子暴露 $$max\ f^{T}w$$ - 约束条件包括: - 风格暴露限制 $$s_{l}\leq X(w-w_{b})\leq s_{h}$$ - 行业偏离限制 $$h_{l}\leq H(w-w_{b})\leq h_{h}$$ - 换手率约束 $$\Sigma|w-w_{0}|\leq to_{h}$$[54] - **模型评价**:更贴近实际投资约束,能有效检验因子在复杂条件下的表现 --- 量化因子与构建方式 1. **因子名称**:单季ROE - **构建思路**:反映公司当期净资产收益率,属于盈利类因子[19] - **具体构建**: $$Quart\_ROE = \frac{单季净利润*2}{期初净资产+期末净资产}$$[19] 2. **因子名称**:一个月反转 - **构建思路**:捕捉短期价格反转效应[19] - **具体构建**:过去20个交易日涨跌幅的相反数 3. **因子名称**:标准化预期外盈利(SUE) - **构建思路**:衡量盈利超预期程度[19] - **具体构建**: $$SUE = \frac{单季实际净利-预期净利}{预期净利标准差}$$ 4. **因子名称**:特异度(IVR_1M) - **构建思路**:反映个股收益脱离市场共同因素的程度[19] - **具体构建**: $$IVR\_1M = 1 - R^2_{FF3}$$(Fama-French三因子回归拟合度) --- 模型回测效果 1. **DFQ-2020风格因子表现**(中证全指样本) - Liquidity因子:近一周收益5.44%,近一年年化33.79%[11] - Size因子:近一周收益-5.96%,历史年化-29.56%[11] 2. **MFE组合模型** - 沪深300增强产品:近一周超额收益中位数-0.07%,最高0.47%[47] - 中证1000增强产品:今年以来超额收益中位数3.28%,最高9.18%[53] --- 因子回测效果 1. **沪深300样本空间** - 预期PEG因子:近一周收益0.88%,近一年年化2.96%[22] - 单季ROE因子:近一周收益0.86%,历史年化4.25%[22] 2. **中证1000样本空间** - 一个月反转因子:近一周收益1.03%,近一年年化-10.62%[32] - 特异度因子:近一周收益0.76%,历史年化4.98%[32] 3. **创业板指样本空间** - 标准化预期外盈利:近一周收益16.09%,近一年年化32.15%[39] - 3个月盈利上下调:近一周收益-3.87%,历史年化-12.03%[39] --- 附录:MFE组合构建细节 - **优化变量**:$w$为股票权重向量,$w_b$为基准权重[54] - **行业约束**:$B_b$为成分股0-1矩阵,限制成分股权重占比[57] - **换仓频率**:月末调仓,双边交易成本0.3%[58]