《自动驾驶VLA和大模型实战课程》
搜索文档
端到端VLA的入门进阶和求职,我们配备了完整的学习路线图!
自动驾驶之心· 2025-12-18 00:06
行业人才需求与趋势 - 近期多家行业中游厂商积极寻求端到端自动驾驶和视觉语言动作模型方向的技术人才 计划在明年投入更多资源进行技术落地 [2] - 对于经验丰富的专家级人才 行业提供的薪酬水平普遍在百万年薪起步 显示出市场对高端技术人才的强烈需求和竞争 [2] 行业培训课程概况 - 为应对工业界明确的技术需求 行业推出了多个聚焦于量产落地的实战培训课程 包括《面向量产的端到端实战小班课》、《端到端与VLA自动驾驶小班课》和《自动驾驶VLA和大模型实战课程》旨在打通从入门、进阶到求职的全链条 [4] - 课程由来自顶尖企业和学术机构的专家授课 师资背景强大 均拥有C9及QS排名前列高校的学历 并在国际顶级会议发表多篇论文 且具备将前沿算法成功量产落地的实战经验 [6][9][14][15] 端到端自动驾驶量产课程 - 该课程聚焦于端到端自动驾驶的量产落地 详细讲解导航信息应用、强化学习优化、Diffusion和自回归模型的量产经验以及时空联合规划兜底等核心模块 [4] - 课程设计了七大落地实战项目 目标人群为已经从事端到端自动驾驶相关工作并希望进阶加薪的从业者 [4] 端到端与VLA宏观技术课程 - 该课程从宏观领域梳理端到端自动驾驶 涵盖一段式/两段式方向的重点算法和理论基础 详细讲解BEV感知、大语言模型、扩散模型和强化学习 [7] - 课程包含两大实战项目 分别是基于扩散模型的Diffusion Planner和基于视觉语言动作模型的ORION算法 [7] 自动驾驶VLA与大模型实战课程 - 该课程由学术界专家带队 全面梳理视觉语言动作模型领域 涵盖从视觉语言模型作为解释器到模块化VLA、一体化VLA以及当前主流的推理增强VLA三大方向 [12] - 课程配套详细的理论基础梳理 包括视觉、语言、动作三大模块以及强化学习和扩散模型等 并设有大作业章节指导学员从零搭建自己的视觉语言动作模型及数据集 [12] - 课程对学员有明确的先决条件要求 包括需要自备算力在4090及以上的GPU、具备自动驾驶领域基础、了解Transformer大模型等技术的基本概念、拥有一定的数学和编程基础 [11]
留给端到端和VLA的转行时间,应该不多了......
自动驾驶之心· 2025-11-25 00:03
课程核心观点 - 自动驾驶技术正从模块化量产算法向端到端和视觉语言动作模型演进,掌握相关前沿技术对职业发展至关重要 [1] - 行业端到端和视觉语言动作模型岗位即将饱和,为从业者留下的窗口期已不多 [1] - 推出《端到端与视觉语言动作模型自动驾驶小班课》和《自动驾驶视觉语言动作模型和大模型实战课程》,旨在帮助学员快速高效入门 [1] 自动驾驶视觉语言动作模型与大模型实战课程 - 课程聚焦视觉语言动作模型领域,内容涵盖从视觉语言模型作为自动驾驶解释器到模块化、一体化及当前主流的推理增强视觉语言动作模型 [1] - 课程配套理论基础梳理,包括视觉、语言、动作三大模块、强化学习、扩散模型等,并设有大作业章节指导学员从零搭建自己的视觉语言动作模型及数据集 [1] - 由学术界专家带队,适合刚接触大模型和视觉语言动作模型的学员 [1] 端到端与视觉语言动作模型自动驾驶课程 - 课程聚焦端到端自动驾驶宏观领域,梳理一段式/两段式方向的重点算法和理论基础,详细讲解鸟瞰图感知、大语言模型、扩散模型和强化学习 [9] - 课程设计两大实战项目:基于扩散模型的Diffusion Planner和基于视觉语言动作模型的ORION算法 [9] - 由工业界专家带队,讲师为国内顶级主机厂算法专家,拥有端到端算法研发和产品量产交付经验 [9][11] 师资团队 - 讲师团队由学术界和工业界专家组成,包括清华大学硕士生、QS30高校博士等,在ICCV、IROS、EMNLP等顶级会议发表多篇论文 [6][8][11] - 团队拥有多模态感知、自动驾驶视觉语言动作模型、大模型Agent等前沿算法预研经验,并主持完成多项自动驾驶框架工具和产品量产 [6][8][11] - 一位讲师在GitHub上维护的自动驾驶与计算机视觉开源项目总Star数已超过2k [6] 目标学员与技术要求 - 学员需自备GPU,推荐算力在4090及以上 [12] - 要求具备一定的自动驾驶领域基础,熟悉基本模块,了解Transformer大模型、强化学习、鸟瞰图感知等技术概念 [13] - 需具备概率论、线性代数基础及Python和PyTorch编程能力 [13]
工业界和学术界都在怎么搞端到端和VLA?
自动驾驶之心· 2025-10-17 00:03
端到端自动驾驶技术趋势 - 端到端算法是当前自动驾驶量产的核心算法,技术栈丰富,业内主要存在一段式和两段式两大类范式 [1] - 一段式范式以UniAD为代表,直接从传感器输入建模自车轨迹输出,而二段式则基于感知结果进一步输出自车和他车轨迹 [1] - 一段式端到端算法可进一步延伸出基于感知、扩散模型、世界模型以及视觉语言模型(VLA)等多种子领域,尤其是基于VLA的算法相关论文正爆发式发表,工业界也在争先量产 [1] 自动驾驶VLA与大模型技术 - 核心算法涉及BEV感知、视觉语言模型(VLM)、扩散模型、强化学习、世界模型等,代表了学术界和工业界最前沿的技术方向 [3] - 自动驾驶VLA与大模型实战课程聚焦VLA领域,内容涵盖从VLM作为自动驾驶解释器,到模块化VLA、一体化VLA,以及当前主流的推理增强VLA [3] - 课程配套理论基础梳理,包括Vision/Language/Action三大模块、强化学习、扩散模型等,并设有大作业章节指导从零搭建VLA模型及数据集 [3] 课程师资与团队 - 课程教师团队包括来自清华大学等顶尖院校的研究人员,在ICCV、IROS、EMNLP等国际顶级会议发表多篇论文,研究方向涵盖多模态感知、自动驾驶VLA、大模型Agent等前沿领域 [8][11] - 教师团队具备丰富的自动驾驶、大模型研发和实战经验,例如有教师主持完成多项自动驾驶感知和大模型框架工具,其维护的开源项目总Star数超过2k [8] - 工业界教师团队包括来自国内顶级主机厂的算法专家,拥有CCF-A/B论文发表记录,并主持完成多项自动驾驶感知和端到端算法的产品量产交付,具备丰富的端到端算法研发经验 [12][14] 端到端自动驾驶课程内容 - 端到端与VLA自动驾驶课程由工业界专家带队,聚焦端到端自动驾驶宏观领域,梳理一段式/两段式方向的重点算法和理论基础 [12] - 课程详细讲解BEV感知、大语言模型、扩散模型和强化学习等关键技术 [12] - 课程设计两大实战项目:基于扩散模型的Diffusion Planner和基于VLA的ORION算法 [12] 课程参与要求 - 参与者需要自备GPU,推荐算力在RTX 4090及以上 [15] - 参与者需具备一定的自动驾驶领域基础,熟悉自动驾驶基本模块,并了解transformer大模型、强化学习、BEV感知等技术的基本概念 [17] - 参与者需具备一定的概率论和线性代数基础,熟悉常用数学运算,并具备一定的Python和PyTorch语言基础 [17]
工业界和学术界大佬带队!彻底搞定端到端与VLA
自动驾驶之心· 2025-10-09 23:32
端到端自动驾驶算法趋势 - 端到端算法已成为自动驾驶量产的核心算法,技术栈丰富,业内主要存在一段式和两段式两大类范式 [1] - 一段式范式以UniAD为代表,直接从传感器输入建模自车轨迹输出,二段式则基于感知结果进一步输出自车和他车轨迹 [1] - 一段式端到端算法可进一步细分为基于感知、扩散模型、世界模型及视觉语言模型(VLA)等多种子领域,尤其基于VLA的算法相关论文正爆发式发表,工业界也在争先量产 [1] 核心技术与课程定位 - 从模块化算法到端到端再到VLA,核心算法涉及BEV感知、视觉语言模型、扩散模型、强化学习、世界模型等,掌握这些技术可把握学术界和工业界最前沿方向 [3] - 行业推出《端到端与VLA自动驾驶小班课》与《自动驾驶VLA和大模型实战课程》,旨在帮助从业者快速高效入门 [3] - 《自动驾驶VLA与大模型实战课程》由学术界专家带队,聚焦VLA领域,涵盖从VLM作为自动驾驶解释器到模块化VLA、一体化VLA及推理增强VLA的三大领域 [3] - 课程配套理论基础梳理与大作业章节,指导学员从零搭建自己的VLA模型及数据集 [3] - 《端到端与VLA自动驾驶课程》由工业界专家带队,聚焦端到端自动驾驶宏观领域,梳理一段式/两段式重点算法,详解BEV感知、大语言模型、扩散模型和强化学习 [10] - 工业界课程设计两大实战项目:基于扩散模型的Diffusion Planner和基于VLA的ORION算法 [10] 师资力量与学员要求 - 课程讲师团队包括来自清华大学等顶尖院校的研究人员,在ICCV、IROS、EMNLP等顶级会议发表多篇论文,研究方向涵盖多模态感知、自动驾驶VLA、大模型Agent等前沿领域 [7][9] - 讲师团队具备丰富的自动驾驶、大模型研发和实战经验,并主持完成多项算法预研、框架工具及产品量产交付 [7][9][10] - 课程面向具备一定自动驾驶领域基础、熟悉Transformer大模型、强化学习、BEV感知等基本概念的学员,要求自备算力在4090及以上的GPU,并具备Python和PyTorch语言基础 [13]