Workflow
视觉语言模型VLM
icon
搜索文档
随到随学!端到端与VLA自动驾驶小班课正式结课
自动驾驶之心· 2025-12-09 19:00
行业技术发展趋势 - 2023年是端到端自动驾驶量产的元年,2024年将是其量产的大年,目前头部新势力和主机厂均已实现端到端量产 [1] - 工业界存在两种主要技术范式:一段式(如UniAD,从传感器输入直接建模自车轨迹)和二段式(基于感知结果进一步输出自车及他车轨迹) [1] - 自2023年以来,一段式端到端技术发展迅速,衍生出基于感知、世界模型、扩散模型及视觉语言模型(VLA)等多种方法 [3] - 主流自动驾驶企业,包括智驾方案供应商和车企,均在发力端到端自动驾驶的自研与量产 [3] - 基于视觉语言模型(VLA)的端到端方法被认为是目前该领域的皇冠,上限高且难度大,因此业内招聘需求也最为旺盛 [12] 课程核心内容与结构 - 课程旨在系统讲解端到端与VLA自动驾驶,内容涵盖BEV感知、视觉语言模型、扩散模型、强化学习等前沿技术栈 [5] - 第一章介绍端到端算法的发展历史、概念起源、从模块化到端到端的演进,以及一段式、二段式和VLA范式的优缺点与适用场景 [8] - 第二章重点讲解端到端涉及的背景知识,包括大语言模型、扩散模型、强化学习及BEV感知,这些被认为是未来两年求职面试的高频技术关键词 [8][9] - 第三章聚焦二段式端到端,解析其定义、出现原因,并讲解经典算法PLUTO、CVPR'25的CarPlanner及最新的Plan-R1等工作 [9] - 第四章作为课程精华,深入讲解一段式端到端的各个子领域:基于感知的UniAD、基于世界模型、基于扩散模型以及基于VLA的方法 [10] - 第五章设置RLHF微调大作业,进行实战演练,内容包括预训练与强化学习模块搭建,该技能可迁移至VLA相关算法 [11][13] 关键技术详解与实战案例 - 基于感知的一段式方法将讲解奠基之作UniAD、地平线VAD以及CVPR'24的PARA-Drive [12] - 基于世界模型的方法将讲解AAAI'25的Drive-OccWorld和复旦团队的OccLLaMA,世界模型技术方向热门,应用广泛,包括场景生成、端到端驾驶和闭环仿真 [12] - 基于扩散模型的方法将讲解业内应用广泛的DiffusionDrive、Diffusion Planner和吉大的DiffE2E,并配有Diffusion Planner实战,扩散模型用于多模轨迹预测以更好适应环境不确定性 [12] - 基于VLA的方法将讲解小米的ORION、慕尼黑工大的OpenDriveVLA以及最新的ReCogDrive,并以小米ORION(截至2025年7月已开源推理和评测模块)作为实战案例 [12] - 课程第二章将详细拆解多项基础技术:从Transformer扩展到视觉Transformer,讲解CLIP和LLaVA;详解BEV感知在3D检测、车道线、OCC、轨迹预测与规划中的应用;讲解扩散模型理论;以及VLM相关的强化学习技术如RLHF和GRPO [11] 课程目标与受众要求 - 该课程是首个面向端到端自动驾驶的进阶实战教程,旨在推动端到端技术在工业界的落地 [14] - 期望学员学完后能达到具备1年左右经验的端到端自动驾驶算法工程师水平 [16] - 学员需自备GPU,推荐算力在RTX 4090及以上;需具备一定的自动驾驶领域基础,熟悉基本模块;了解transformer大模型、强化学习、BEV感知等基本概念;具备概率论、线性代数基础及Python和PyTorch编程能力 [16] - 课程收获包括:掌握涵盖一段式、两段式、世界模型、扩散模型等的端到端技术框架;对BEV感知、多模态大模型、强化学习、扩散模型等关键技术有更深刻理解;可复现扩散模型、VLA等主流算法框架;能够将所学应用于实际项目设计 [16]
端到端和VLA的岗位,薪资高的离谱......
自动驾驶之心· 2025-11-19 00:03
行业人才需求与市场状况 - 端到端和视觉语言动作模型技术人才需求旺盛,多家主机厂和供应商积极寻求引荐 [1] - 某招聘网站上3-5年经验的专家岗位月薪高达70k [1] 核心技术栈与趋势 - 技术发展路径从模块化量产算法演进至端到端,再到当前的视觉语言动作模型 [2] - 核心算法涉及BEV感知、视觉语言模型、扩散模型、强化学习、世界模型等前沿领域 [2] - 掌握端到端与视觉语言动作模型技术意味着掌握学术界和工业界最前沿的技术方向 [2] 自动驾驶VLA与大模型实战课程 - 课程聚焦视觉语言动作模型领域,涵盖从视觉语言模型作为解释器到模块化、一体化及推理增强视觉语言动作模型的三大方向 [2] - 配套理论基础包括视觉、语言、动作三大模块,以及强化学习、扩散模型等,并设有大作业章节指导学员从零搭建模型及数据集 [2] - 授课老师包括清华大学硕士生,在ICCV/IROS/EMNLP等顶级会议发表多篇论文,拥有多模态感知、视觉语言动作模型、大模型Agent等前沿算法预研经验 [7] - 授课老师包括QS30高校博士在读,在EMNLP/IROS/ICCV等会议发表论文,研究方向涵盖多模态大模型与视觉语言动作模型,其GitHub开源项目总Star数超2k [7] - 授课老师包括清华大学硕士生,在RAL/IROS/EMNLP发表论文,从事在线建图感知、视觉语言动作模型、大模型Agent等算法预研 [10] 端到端与VLA自动驾驶课程 - 课程聚焦端到端自动驾驶宏观领域,梳理一段式/两段式方向的重点算法和理论基础,详细讲解BEV感知、大语言模型、扩散模型和强化学习 [11] - 课程设计两大实战项目:基于扩散模型的Diffusion Planner和基于视觉语言动作模型的ORION算法 [11] - 授课老师为C9本科+QS50博士,已发表CCF-A论文2篇,现任国内顶级主机厂算法专家,从事端到端、大模型、世界模型等算法的预研和量产,并完成多项产品量产交付 [13] 课程面向人群要求 - 学员需自备GPU,推荐算力在4090及以上 [14] - 需具备一定的自动驾驶领域基础,熟悉基本模块,了解transformer大模型、强化学习、BEV感知等技术概念 [15] - 需具备一定的概率论和线性代数基础,熟悉常用数学运算,并具备一定的Python和PyTorch语言基础 [15]
做了一份端到端进阶路线图,面向落地求职......
自动驾驶之心· 2025-11-18 00:05
文章核心观点 - 市场对端到端和视觉语言动作模型技术人才需求旺盛,主机厂和供应商积极寻求相关专家,3-5年经验的专家岗位月薪高达70k [1] - 为满足行业学习需求,公司联合工业界和学术界专家推出两门实战课程,分别聚焦VLA大模型和端到端自动驾驶技术 [1][10] 课程内容与技术方向 - 自动驾驶VLA与大模型实战课程由学术界团队主导,课程体系覆盖从视觉语言模型作为解释器到模块化VLA、一体化VLA及推理增强VLA的全链路技术 [1] - 课程配套理论基础模块,包括Vision/Language/Action三大组件、强化学习、扩散模型等,并通过大作业指导学员从零搭建VLA模型及数据集 [1] - 端到端与VLA自动驾驶课程由工业界专家带队,重点讲解一段式/两段式端到端算法,核心技术点包括BEV感知、大语言模型、扩散模型和强化学习 [10] - 端到端课程设计两大实战项目:基于扩散模型的Diffusion Planner和基于VLA的ORION算法,紧密结合工业界量产实践 [10] 师资力量与团队背景 - 课程讲师团队由清华大学硕士、QS30高校博士等顶尖学术背景人才组成,在ICCV、IROS、EMNLP、Nature Communications等顶级会议和期刊发表多篇论文 [6][9] - 工业界讲师具备C9本科和QS50博士学历,现任国内顶级主机厂算法专家,拥有端到端算法和大模型预研及量产交付经验,已发表多篇CCF-A/B类论文 [12] - 讲师团队长期维护GitHub开源项目,总Star数超过2k,具备扎实的多模态大模型研发能力和丰富的自动驾驶实战经验 [6] 目标学员与技术要求 - 课程面向具备一定自动驾驶领域基础的学习者,要求熟悉自动驾驶基本模块和transformer大模型、强化学习、BEV感知等技术概念 [14] - 学员需具备概率论、线性代数基础和常用的数学运算能力,同时要求掌握一定的Python和PyTorch编程语言基础 [14] - 硬件方面要求学员自备GPU,推荐算力在4090及以上级别以满足课程实战需求 [13]
工业界和学术界都在怎么搞端到端和VLA?
自动驾驶之心· 2025-10-17 00:03
端到端自动驾驶技术趋势 - 端到端算法是当前自动驾驶量产的核心算法,技术栈丰富,业内主要存在一段式和两段式两大类范式 [1] - 一段式范式以UniAD为代表,直接从传感器输入建模自车轨迹输出,而二段式则基于感知结果进一步输出自车和他车轨迹 [1] - 一段式端到端算法可进一步延伸出基于感知、扩散模型、世界模型以及视觉语言模型(VLA)等多种子领域,尤其是基于VLA的算法相关论文正爆发式发表,工业界也在争先量产 [1] 自动驾驶VLA与大模型技术 - 核心算法涉及BEV感知、视觉语言模型(VLM)、扩散模型、强化学习、世界模型等,代表了学术界和工业界最前沿的技术方向 [3] - 自动驾驶VLA与大模型实战课程聚焦VLA领域,内容涵盖从VLM作为自动驾驶解释器,到模块化VLA、一体化VLA,以及当前主流的推理增强VLA [3] - 课程配套理论基础梳理,包括Vision/Language/Action三大模块、强化学习、扩散模型等,并设有大作业章节指导从零搭建VLA模型及数据集 [3] 课程师资与团队 - 课程教师团队包括来自清华大学等顶尖院校的研究人员,在ICCV、IROS、EMNLP等国际顶级会议发表多篇论文,研究方向涵盖多模态感知、自动驾驶VLA、大模型Agent等前沿领域 [8][11] - 教师团队具备丰富的自动驾驶、大模型研发和实战经验,例如有教师主持完成多项自动驾驶感知和大模型框架工具,其维护的开源项目总Star数超过2k [8] - 工业界教师团队包括来自国内顶级主机厂的算法专家,拥有CCF-A/B论文发表记录,并主持完成多项自动驾驶感知和端到端算法的产品量产交付,具备丰富的端到端算法研发经验 [12][14] 端到端自动驾驶课程内容 - 端到端与VLA自动驾驶课程由工业界专家带队,聚焦端到端自动驾驶宏观领域,梳理一段式/两段式方向的重点算法和理论基础 [12] - 课程详细讲解BEV感知、大语言模型、扩散模型和强化学习等关键技术 [12] - 课程设计两大实战项目:基于扩散模型的Diffusion Planner和基于VLA的ORION算法 [12] 课程参与要求 - 参与者需要自备GPU,推荐算力在RTX 4090及以上 [15] - 参与者需具备一定的自动驾驶领域基础,熟悉自动驾驶基本模块,并了解transformer大模型、强化学习、BEV感知等技术的基本概念 [17] - 参与者需具备一定的概率论和线性代数基础,熟悉常用数学运算,并具备一定的Python和PyTorch语言基础 [17]
基于模仿学习的端到端决定了它的上限不可能超越人类
自动驾驶之心· 2025-09-24 06:35
自动驾驶VLA技术趋势与行业认知 - 基于模仿学习的端到端自动驾驶本质是模仿人类行为,对物理世界的理解并不透彻 [1] - 端到端技术标志着智能驾驶从规则驱动向数据驱动的根本转变,但在面对复杂困难场景时仍然受限 [2] - 视觉语言模型提供了从模仿人类到成为人类的可能性,其更强大的通用泛化能力为解决corner case提供了新路径 [2] - VLA技术栈尚未收敛,一系列新算法正不断涌现 [3] 自动驾驶VLA实战课程核心内容 - 课程涵盖VLA三大子领域:作为解释器的VLM、模块化与一体化VLA、推理增强VLA [12] - 系统讲解视觉感知、语言模型、动作基础等核心技术模块 [12][21] - 包含大模型与自动驾驶结合的前沿技术:RAG、CoT、RL、MoE等 [12][21] - 提供从数据集定义到模型搭建、训练、性能提升的完整实战路径 [5][23] 课程教学团队与资质 - 讲师团队来自清华大学等顶尖院校,在ICCV、IROS、EMNLP等顶级会议发表多篇论文 [6][7][8][9][10] - 团队具备丰富的自动驾驶、大模型研发和实战经验,GitHub开源项目总Star数超过2k [6][8][10] - 教研团队联合国内外学术力量共同打造国内最新VLA实战课程 [16] 课程特色与学习价值 - 采用Just-in-Time Learning理念,直击学习痛点,帮助学员快速掌握核心技术栈 [17] - 构建领域框架,提升研究能力,帮助学员形成自己的研究体系和工作经验 [18] - 理论结合实践,配备实战环节,完成从理论到实践的完整闭环 [19][23] - 课程预计两个半月结课,采用离线视频教学加VIP群内答疑模式 [43] 自动驾驶VLA人才市场需求 - VLA/VLM大模型算法专家岗位薪资达40-70K,要求3-5年经验、硕士学历 [14] - 模型量化部署工程师薪资40-60K,要求1-3年经验、本科学历 [14] - 多模态VLA大模型方向顶尖技术人才薪资达90-120K,面向在校/应届博士 [14] - VLM实习生日薪220-400元,要求硕士学历 [14] 课程技术深度与实战项目 - 详细讲解BEV感知、目标检测、在线地图、OCC、轨迹预测等视觉感知技术 [21][32] - 涵盖Transformer基础、VL统一技术、判别式与生成式解码器等核心算法 [21] - 实战项目包括华科与小米的ReCogDrive和清华与博世的Impromptu VLA [22][23][33][35] - 大作业要求学员基于ms-swift框架搭建自己的VLA模型,完成数据准备、模型训练和微调全流程 [23][37]