Workflow
金融工程
icon
搜索文档
新价量相关性因子绩效月报20250430-20250506
东吴证券· 2025-05-06 13:32
量化因子与构建方式 1. **因子名称**:新价量相关性RPV因子 - **构建思路**:通过划分价量四象限,利用月度IC均值甄别价量相关性因子的反转效应和动量效应,结合日内与隔夜信息叠加,加入成交量信息构建因子[6] - **具体构建过程**: 1. 日内价量相关性:使用CCOIV(日内收盘价与成交量相关性)代表,公式为 $$ \text{CCOIV} = \text{Corr}(\Delta \text{Close}_{\text{intraday}}, \text{Volume}_{\text{intraday}}) $$ 2. 隔夜价量相关性:使用COV(隔夜收益与昨日成交量相关性)代表,公式为 $$ \text{COV} = \text{Corr}(\Delta \text{Close}_{\text{overnight}}, \text{Volume}_{\text{previous day}}) $$ 3. 信息叠加:将CCOIV(反转效应)与COV(动量效应)结合,形成RPV因子[6] - **因子评价**:因子通过价量配合增强选股效果,兼具反转与动量特性[6] 2. **因子名称**:聪明版日频价量相关性SRV因子 - **构建思路**:改进RPV因子,通过拆分日内涨跌时段并识别"聪明"交易时段(知情交易集中时段),优化价量相关性计算[6][12] - **具体构建过程**: 1. 日内部分:将下午涨跌与"聪明"换手率(知情交易比例高的时段换手率)计算相关性 $$ \text{SRV}_{\text{intraday}} = \text{Corr}(\Delta \text{Close}_{\text{afternoon}}, \text{Smart Turnover}_{\text{afternoon}}) $$ 2. 隔夜部分:将隔夜收益与昨日最后半小时换手率计算相关性 $$ \text{SRV}_{\text{overnight}} = \text{Corr}(\Delta \text{Close}_{\text{overnight}}, \text{Turnover}_{\text{last 30min}}) $$ 3. 合成因子:结合效果更优的日内与隔夜部分[12] - **因子评价**:通过识别知情交易时段提升因子稳定性,效果优于RPV因子[12] --- 因子的回测效果 1. **RPV因子**(2014/01-2025/04全市场回测)[7][10] - 年化收益率:14.97% - 年化波动率:7.72% - 信息比率(IR):1.94 - 月度胜率:73.33% - 最大回撤:10.63% 2. **SRV因子**(2014/01-2025/04全市场回测)[7][10] - 年化收益率:17.84% - 年化波动率:6.44% - 信息比率(IR):2.77 - 月度胜率:76.30% - 最大回撤:3.74% 3. **2025年4月单月表现**(全市场)[10] - RPV因子:多头收益-0.67%,空头收益-3.38%,多空对冲收益2.70% - SRV因子:多头收益-2.10%,空头收益-3.26%,多空对冲收益1.16% --- 补充说明 - RPV因子在2014/01-2023/08回测期内年化收益16.29%,IR 2.41[6] - SRV因子在相同回测期内RankICIR为-4.26,年化收益18.91%,IR 3.07,月度胜率80%[12]
盈利预期期限结构选股月报:前四个月全部组合跑赢基准-20250502
华西证券· 2025-05-02 14:47
量化因子与构建方式 1 **因子名称**:盈利预期期限结构因子 **因子构建思路**:通过分析未来多年盈利预测的趋势(斜率)反映分析师对公司的乐观、中性或悲观预期[7] **因子具体构建过程**: - 以未来年度为X轴,盈利预测为Y轴,拟合线性趋势 - 斜率分为三类:向上倾斜(乐观)、水平(中性)、向下倾斜(悲观) - 斜率计算公式: $$ \text{斜率} = \frac{n\sum{(x_i y_i)} - \sum{x_i}\sum{y_i}}{n\sum{x_i^2} - (\sum{x_i})^2} $$ 其中$x_i$为年度变量(如1/2/3年),$y_i$为对应盈利预测值 **因子评价**:历史表现稳定,能有效捕捉预期变化[9] 2 **因子名称**:合成动量 ff 因子 **因子构建思路**:将盈利预期期限结构"动量 ff"因子与传统分析师预期调升因子(如一致预期净利润3个月变化率)合成,提升稳定性和收益能力[11] **因子具体构建过程**: - 原始因子标准化处理: $$ z_{\text{动量}} = \frac{\text{盈利预期斜率} - \mu_{\text{斜率}}}{\sigma_{\text{斜率}}} $$ $$ z_{\text{调升}} = \frac{\text{净利润3个月变化率} - \mu_{\text{调升}}}{\sigma_{\text{调升}}} $$ - 等权合成: $$ \text{合成动量 ff} = 0.5 \times z_{\text{动量}} + 0.5 \times z_{\text{调升}} $$ **因子评价**:兼具高收益与稳定性,改善传统因子的回撤问题[11] --- 因子回测效果 1 **盈利预期期限结构因子**:累计IC显著(图示趋势,未提供具体数值)[8] 2 **合成动量 ff 因子**:累计IC优于单一因子(图示合成后曲线更平滑)[13] --- 选股组合表现 (基于合成动量 ff 因子构建) 1 **沪深300组合**: - 2025年4月超额收益:-0.57% - 2025年前4月累计超额收益:1.21%[14] 2 **中证500组合**: - 2025年4月超额收益:0.73% - 2025年前4月累计超额收益:0.76%[14] 3 **中证800组合**: - 2025年4月超额收益:-0.02% - 2025年前4月累计超额收益:2.07%[14] 4 **中证1000组合**: - 2025年4月超额收益:1.13% - 2025年前4月累计超额收益:2.59%[14]
【广发金工】AI识图关注红利低波(20250330)
广发金融工程研究· 2025-03-30 04:51
市场表现与指数动态 - 最近5个交易日科创50指数跌1.29%,创业板指跌1.12%,大盘价值涨0.28%,大盘成长涨0.04%,上证50涨0.16%,国证2000代表的小盘跌2.98% [1] - 医药生物、农林牧渔市场表现靠前,计算机、国防军工表现靠后 [1] - 中证全指风险溢价指标在2024/01/19达到4.11%,为2016年以来第五次超过4%,截至2025/03/28回落至3.69%,两倍标准差边界为4.72% [1] 估值水平与技术分析 - 截至2025/03/28,中证全指PETTM分位数53%,上证50与沪深300分别为58%、48%,创业板指接近14%,中证500与中证1000分别为33%、38% [2] - 深100指数技术面呈现3年周期规律,2012/2015/2018/2021年熊市下行幅度40%-45%,2021年一季度开始的调整时间与空间已较充分 [2] - 卷积神经网络模型当前配置主题为建筑材料、红利低波等板块 [2][9] 资金交易数据 - 最近5个交易日ETF资金流入162亿元,融资盘减少约248亿元,两市日均成交12346亿元 [3] 量化模型应用 - 卷积神经网络通过标准化价量图表建模,将学习特征映射至行业主题板块,如中证全指建筑材料指数、中证红利低波动指数等 [8][9] 指数与板块跟踪 - 重点跟踪指数包括中证全指建筑材料指数(931009.CSI)、中证红利低波动指数(h30269.CSI)、中证钢铁指数(930606.CSI)等 [9]
择时雷达六面图:估值面略有弱化
国盛证券· 2025-03-16 15:25
量化模型与构建方式 1. **模型名称:择时雷达六面图** - **模型构建思路**:从流动性、经济面、估值面、资金面、技术面、拥挤度六个维度选取21个指标,综合生成[-1,1]之间的择时分数,反映市场中性或偏多/偏空信号[1][5]。 - **模型具体构建过程**: 1. **指标分类**:将指标分为四大类——"估值性价比"、"宏观基本面"、"资金&趋势"、"拥挤度&反转"。 2. **标准化处理**:对单指标计算zscore或分位数,截尾后标准化到±1区间。 3. **综合打分**:加权汇总各维度得分,生成综合择时分数[1][5][6]。 - **模型评价**:多维视角覆盖市场关键驱动因素,但依赖历史数据假设,需动态调整参数[1][5]。 2. **因子名称:货币方向因子** - **因子构建思路**:通过货币政策利率与短端市场利率的变化方向判断货币宽松/收紧[11]。 - **因子具体构建过程**:计算央行政策利率与市场利率(如DR007)90天前的平均变化方向,若>0为宽松(分数=1),<0为收紧(分数=-1)[11][13]。 3. **因子名称:货币强度因子** - **因子构建思路**:衡量短端利率偏离政策利率的程度,反映货币环境松紧[14][16]。 - **因子具体构建过程**: $$偏离度 = \frac{DR007}{7天逆回购利率} - 1$$ 平滑后计算zscore,若<-1.5倍标准差则未来120日分数=1,>1.5倍标准差则分数=-1[14][16]。 4. **因子名称:信用方向因子** - **因子构建思路**:基于中长期贷款同比变化判断信用扩张/收缩[17][19]。 - **因子具体构建过程**:计算中长期贷款过去12个月增量的同比,若较三个月前上升则分数=1,反之=-1[17][19]。 5. **因子名称:信用强度因子** - **因子构建思路**:捕捉信贷数据超预期程度[20][22]。 - **因子具体构建过程**: $$信用强度因子 = \frac{新增人民币贷款 - 预期中位数}{预期标准差}$$ 若>1.5倍标准差则未来60日分数=1,<-1.5倍标准差则=-1[20][22]。 6. **因子名称:增长方向因子** - **因子构建思路**:通过PMI同比变化判断经济增长趋势[23][25]。 - **因子具体构建过程**:计算中采与财新PMI的12月均值同比,较三个月前上升则分数=1,反之=-1[23][25]。 7. **因子名称:通胀方向因子** - **因子构建思路**:结合CPI与PPI判断通胀下行/上行环境[28][30]。 - **因子具体构建过程**: $$通胀方向因子 = 0.5 \times CPI平滑同比 + 0.5 \times PPI原始同比$$ 若较三个月前下降则分数=1,反之=-1[28][30]。 8. **因子名称:席勒ERP** - **因子构建思路**:调整盈利波动后的股权风险溢价[34][36]。 - **因子具体构建过程**: $$席勒PE = \frac{股价}{过去6年通胀调整平均盈利}$$ $$席勒ERP = \frac{1}{席勒PE} - 10年期国债收益率$$ 计算3年zscore并截尾标准化[34][36]。 9. **因子名称:可转债定价偏离度** - **因子构建思路**:通过转债估值偏离度捕捉市场情绪[67][69]。 - **因子具体构建过程**: $$定价偏离度 = \frac{转债价格}{模型定价} - 1$$ 取负值后计算3年zscore[67][69]。 --- 模型的回测效果 1. **择时雷达六面图** - 综合打分:-0.21(中性偏空)[5][7] - 流动性得分:-1.00(显著看空)[7][9] - 经济面得分:0.00(无显著信号)[7][9] - 估值面得分:-0.17(中性)[7][9] - 资金面得分:0.50(显著看多)[7][9] - 技术面得分:0.00(无显著信号)[7][9] - 拥挤度得分:-0.69(显著看空)[7][9] 2. **货币方向因子**:当前分数=-1[11][13] 3. **货币强度因子**:当前分数=-1[14][16] 4. **信用方向因子**:当前分数=-1[17][19] 5. **信用强度因子**:当前分数=-1[20][22] 6. **增长方向因子**:当前分数=1[23][25] 7. **通胀方向因子**:当前分数=-1[28][30] 8. **席勒ERP**:当前分数=0.39[36][38] 9. **可转债定价偏离度**:当前分数=-0.75[67][69] --- 量化因子与构建方式 (注:因子构建过程已整合至模型部分,此处不再重复) --- 因子的回测效果 (注:因子当前分数已整合至模型回测部分)
金工三维情绪模型更新(20250220):情绪浓度下行市场分化,市场重心或随时重回TMT主线
财信证券· 2025-02-25 11:19
量化模型与构建方式 1. **模型名称**:三维情绪模型 **模型构建思路**:通过三个维度(情绪预期、情绪温度、情绪浓度)观察市场情绪面的不同频率波动,分别对应中高频、中频、低频维度的市场情绪变化[7] **模型具体构建过程**: - **情绪预期**:合成沪深300股指期货升贴水率和上证50ETF期权成交额PCR的倒数,通过取均值和主成分分析构建 公式: $${\hat{\mathbb{R}}}\times{\hat{\mathbb{R}}}\times{\hat{\mathbb{R}}}={\frac{{\hat{\mathbb{R}}}\oplus{\hat{\mathbb{R}}}\oplus{\hat{\mathbb{R}}}\oplus{\hat{\mathbb{R}}}\oplus{\hat{\mathbb{R}}}}{{\hat{\mathbb{R}}}\oplus{\hat{\mathbb{R}}}\oplus{\hat{\mathbb{R}}}\oplus{\hat{\mathbb{R}}}\oplus{\hat{\mathbb{R}}}\oplus{\hat{\mathbb{R}}}}}$$ 其中,沪深300股指期货升贴水率计算公式为: $${\text{升贴水率}} = \frac{{\text{沪深300股指期货主力价格}} - {\text{沪深300指数价格}}}{{\text{沪深300指数价格}}}$$[8] - **情绪温度**:基于主力买入率(大单买入金额/沪深成交总额)计算三年滚动百分位,并进行平滑处理[12] - **情绪浓度**:计算中信三级行业体系指数的第一主成分方差贡献率,滚动窗口平滑处理后得到[16] **模型评价**:三维情绪模型能够有效捕捉市场情绪的不同频率波动,情绪浓度指标高于警戒线(0.83)时具有长期牛熊转折预示作用[16] 模型的回测效果 1. **三维情绪模型** - 情绪预期当前值(20250220):0.7696[9] - 情绪温度当前值(20250220):0.6952[13] - 情绪浓度当前值(20250220):0.6884[18] 量化因子与构建方式 1. **因子名称**:情绪预期因子 **因子构建思路**:反映市场短期情绪变化,通过股指期货升贴水率和期权成交额PCR合成[8] **因子具体构建过程**: - 计算沪深300股指期货升贴水率 - 计算上证50ETF期权成交额PCR的倒数 - 对两者取均值和主成分分析合成情绪预期指标[8] 2. **因子名称**:情绪温度因子 **因子构建思路**:反映市场主力资金热度变化,基于主力买入率计算[12] **因子具体构建过程**: - 计算主力买入率(大单买入金额/沪深成交总额) - 对主力买入率进行平滑处理 - 计算三年滚动百分位得到情绪温度指标[12] 3. **因子名称**:情绪浓度因子 **因子构建思路**:反映市场多资产相关性变化,衡量情绪累积程度[16] **因子具体构建过程**: - 计算中信三级行业体系指数的第一主成分方差贡献率 - 对贡献率进行滚动窗口平滑处理得到情绪浓度指标[16] 因子的回测效果 1. **情绪预期因子** - 当前值(20250220):0.7696[9] 2. **情绪温度因子** - 当前值(20250220):0.6952[13] 3. **情绪浓度因子** - 当前值(20250220):0.6884[18]