内存带宽

搜索文档
复盘HBM的崛起
半导体行业观察· 2025-08-13 01:38
HBM技术优势与特性 - HBM在带宽、密度和能耗之间实现最佳平衡,适用于AI工作负载,结合垂直堆叠DRAM芯片与超宽数据路径[4] - HBM带宽显著高于其他内存类型,HBM3带宽达819.2 GB/s,远超DDR5的70.4 GB/s和GDDR6X的96.0 GB/s[6] - HBM需通过2.5D封装(如CoWoS)实现高布线密度,因I/O数量超1,000条,PCB或基板无法满足要求[6] - HBM直接放置于计算引擎海岸线附近以降低延迟和能耗,但受限于SOC边缘布局,需垂直堆叠提升容量[7] - HBM制造需TSV工艺和凸块处理,导致芯片尺寸大于DDR,位密度较低(HBM3为0.16 Gb/mm² vs DDR4的0.296 Gb/mm²)[7] HBM市场需求与竞争格局 - AI加速器需求推动HBM比特需求大幅增长,NVIDIA预计2027年占据最大份额,其Rubin Ultra单GPU容量达1 TB[8] - Broadcom(TPU/MTIA)、OpenAI、SoftBank和亚马逊成为HBM主要客户,亚马逊直接采购以降低成本[8] - HBM产能转换依赖TSV和凸块工艺增量步骤,需蚀刻机、沉积工具和光学检测设备支持[10] - HBM封装技术中MR-MUF提供更高生产率和散热性能,海力士专有材料优于美光三星的非导电薄膜[13][14] - 封装工艺效率提升,批量回流焊和单次包覆成型比TC-NCF更高效[18] HBM制造挑战与良率问题 - HBM良率受3DIC堆栈复杂度影响,前端良率问题突出,电源分配网络(PDN)设计是关键挑战[19] - 海力士HBM3E通过全方位电源TSV将TSV数量增近6倍,电压降降低最高75%[20] - 美光专注TSV和电源网络,宣称功耗降低30%[22] - HBM故障是GPU故障主因,散热问题显著,所有制造商良率均低于传统内存[24] - 堆叠层数增加导致良率下降(8层99%良率→92%总良率,12层→87%),键合精度需亚微米级[24][25] - 键合设备商Hanmi早期垄断HBM市场,但供应链争端曾威胁SK海力士生产[25][27] HBM技术演进与未来方向 - HBM堆叠高度受JEDEC标准限制(当前720μm),增加层数需更薄芯片和凸块间隙,良率挑战增大[27] - 混合键合(HB)可消除凸块间隙,支持更多DRAM层,但良率和成本挑战高,量产仍需时间[28] - JEDEC将堆叠高度放宽至775μm,延缓HB采用,更高堆叠需逻辑芯片加厚或中介层调整[29] - HBM4的HB应用讨论转向4E,三星最积极推广,海力士美光更谨慎[32] - AI加速器需高带宽支持并行计算,HBM扩展通过三维度实现:更快信号速度、更多层数、更多堆栈[34] - NVIDIA路线图显示HBM容量从A100的80GB增至Rubin Ultra的1024GB,带宽从2.0 TB/s增至32.0 TB/s[36] HBM在AI工作负载中的应用与瓶颈 - AI模型增长遵循"内存帕金森"动态,HBM容量提升促使模型参数、上下文长度和KVCache占用同步增加[37] - LLM推理中权重和KVCache均驻留HBM,带宽不足导致GPU等待时间超过计算时间,推理受内存限制[38] - 上下文长度增长(常超数十万token)加剧内存压力,需低批量大小服务,但影响经济效益[39] - 强化学习(RL)依赖大量推理生成数据,KVCache卸载至DDR或NVMe可缓解HBM压力[40] - Nvidia Dynamo框架管理KVCache分层存储,常用数据存HBM,次常用存DDR,极少用存NVMe[41] - 工作负载特性决定DDR或NVMe选择,高频循环数据适合DDR,因NAND写入容限有限[42] - 训练阶段权重、激活值和梯度均通过HBM,但RL兴起使训练更接近推理模式[43]
AI芯片的双刃剑
半导体行业观察· 2025-02-28 03:08
软件编程与人工智能建模的范式转变 - 传统软件编程依赖明确的指令代码,适合确定性场景但缺乏动态适应能力[2] - AI软件建模通过数据训练学习模式,使用概率推理处理不确定性,模型复杂度体现在参数规模而非代码量[3] - 高级AI模型如LLM包含数千亿至数万亿参数,依赖多维矩阵数学运算,每个时钟周期并行处理所有参数[3] 处理硬件的影响 - CPU采用串行执行架构,多核多线程提升并行性但仍无法满足AI模型的并行需求[4] - 高端CPU计算能力达几GigaFLOPS,内存带宽峰值500GB/s,内存容量达TB级[5] - GPU提供PetaFLOPS级性能,比CPU高两个数量级,但运行GPT-4时效率可能降至理论峰值的5%[6] - GPU高功耗引发可持续性问题,专用AI加速器(如ASIC)在计算效率和能耗上更具优势[7] AI加速器的关键属性与挑战 - 关键指标包括批处理大小和token吞吐量,需平衡延迟与吞吐量需求[8] - 大批量提升吞吐量但增加内存带宽压力,实时应用(如自动驾驶)需批量大小为1以最小化延迟[12] - 连续批处理技术动态添加输入,减少延迟并提升整体效率[13] - Token吞吐量依赖计算效率和数据移动优化,需首次token输出时间最短[14][15] 内存与计算瓶颈 - 内存带宽是主要瓶颈,大批量导致缓存未命中及访问延迟增加[9][19] - 高带宽内存(HBM3)和智能片上缓存可缓解内存瓶颈[21] - LLM依赖并行矩阵运算和注意力机制,计算瓶颈需专用硬件(如矩阵乘法单元)和混合精度计算(FP8)解决[19][22] 优化方向 - 硬件创新包括类似寄存器的缓存结构、专用加速器设计及高效数据流架构[21][22] - 软件优化涵盖定制化内核、梯度检查点减少内存占用、管道并行提升吞吐量[23] - 混合精度计算在保持模型精度前提下降低内存带宽需求和计算开销[22] 行业技术趋势 - Transformer架构需每个token关注全部历史token,增量Transformer按序计算token提升流式推理效率但增加内存需求[16] - 不规则token模式和自回归模型依赖可能导致硬件管道停滞,需优化调度策略[17] - AI加速器仍处早期阶段,需结合内存架构创新与数据流优化以突破性能限制[18][20][24]