视觉-语言-动作模型(VLA)

搜索文档
MTRDrive:一种具备动态交互式推理的自动驾驶VLA框架(清华&小米)
自动驾驶之心· 2025-09-28 23:33
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 视觉-语言-动作模型(VLA)被认为是提升自动驾驶在长尾场景中推理能力的关键路径,但现有方法在应对长时程与高层级行为决策时仍面临显著挑战。 尤其在极少样本甚至零样本的复杂场景下,模型的泛化能力有限,难以在动态、不确定的道路环境中保持持续稳健的表现。当前的主要痛点可归纳为: 稳健的驾驶决策高度依赖于 感知准确性与推理可靠性 两大核心因素的深度协同。人类驾驶员在长期与环境交互的过程中,不仅依靠实时感知,更善于借助 经验积累实现动态预判与自适应调整,这一过程深刻契合了《论语》 "工欲善其事,必先利其器" 的古老智慧。其中,"器"不仅指驾驶工具,更指向驾驶员 通过经验凝练形成的认知工具库——包括对复杂路况的识别模式、风险预估策略以及应急决策流程。 人类驾驶行为本质上是一个 "感知–判断–决策–行动" 的动态闭环系统。驾驶员通过持续融合实时环境信息与历史经验,不断优化自身的反应策略,从而在不确定的交通场景中实现安全导航。例如,熟练驾驶 员能够依据前方车辆动态、路面状态乃至环境气象特征,提前做出减速或变道等预判性操作,体 ...
从近1000篇工作中,看具身智能的技术发展路线!
自动驾驶之心· 2025-09-07 23:34
机器人操作 - 机器人操作从机械编程演进至具身智能阶段 聚焦多指灵巧手与AI赋能的数据采集和技能学习框架[6] - 灵巧操作依赖模拟器 人类演示和遥操作三种数据采集范式 结合模仿学习和强化学习框架[6] - 面临三大关键挑战 包括高质量数据集缺乏 静态学习框架鲁棒性不足 端到端学习泛化性受限[6][13] 具身导航与操作 - 导航任务从显式记忆转向隐式记忆 操作任务从强化学习拓展至模仿学习 扩散策略及VLA模型[13] - 物理模拟器分为室内型 Habitat AI2-THOR 室外型 CARLA AirSim 和通用型 ThreeDWorld Isaac Sim[12][13] - 操作模拟器包括经典物理引擎 MuJoCo PyBullet 和可微分物理引擎 Dojo Genesis[13] - 评估指标采用成功率 SR 和路径效率 SPL 操作任务使用SO(3)/SE(3)等变表示[13] 具身多模态大模型 - 由具身智能体 大语言模型 GPT系列 大视觉模型 ViT 和视觉语言模型 CLIP 构成基础架构[17] - 覆盖具身感知 导航 交互 仿真四大核心任务 感知分为GPT与非GPT模型 导航分通用与专用模型[17] - 使用Open X-Embodiment和HM3D等数据集 面临跨模态对齐难 计算资源消耗大 领域泛化性弱等挑战[17] 强化学习应用 - 采用RLHF DPO RLVR三种对齐范式 结合PPO和GRPO策略优化算法 通过KL正则约束政策偏移[24][26] - 应用于多模态大语言模型 视觉生成 统一模型和视觉-语言-动作模型四大方向[26] - 评估体系包含集合级 FID 样本级 RLHF奖励 和状态级 KL监控 配套SEED-Bench-R1等基准[26] 遥操作技术 - 系统架构包含人类状态测量 运动重定向 机器人控制和多模态反馈 支持单向或双向操作[30][32] - 运动重定向采用完整动力学模型与简化模型 LIPM 通过ZMP/DCM保证平衡[30] - 应用远程存在和危险作业场景 面临非专家操作门槛高 动态环境适应难 长延迟稳定性差等挑战[33] 视觉-语言-动作模型 - 涵盖80多个近三年发布的VLA模型 涉及架构创新 参数高效训练和实时推理加速等进展[31][34] - 按架构分为单体模型 Monolithic 与分层模型 Hierarchical 从结构与功能双维度分析[39] - 发展历程划分为萌芽 探索和快速发展三阶段 使用互联网图文 视频 仿真和真实机器人数据训练[36] - 应用于类人机器人 自动驾驶 医疗与工业机器人 精准农业和增强现实导航等领域[31]
从近1000篇工作中,看具身智能的技术发展路线!
具身智能之心· 2025-09-05 00:45
机器人操作技术演进 - 机器人操作从机械编程向具身智能演进 从简单夹爪发展到多指灵巧手[5] - 灵巧操作依赖数据采集与技能学习框架 包括模拟 人类演示和遥操作三种数据采集方式以及模仿学习与强化学习两种学习框架[5] - 面临三大关键挑战 涉及复杂被操作对象和多样操作类型[5][8] - 核心技术方向包括灵巧操作 多指手 人工智能赋能机器人 数据采集 模仿学习和强化学习[6] 具身导航与物理模拟器 - 导航与操作是具身智能核心能力 现实训练存在高成本问题 Sim-to-Real迁移受域差距制约[9] - 物理模拟器分为室内型 室外型和通用型 包括Habitat AI2-THOR CARLA AirSim ThreeDWorld和Isaac Sim等[14][15] - 导航从显式记忆转向隐式记忆 操作从强化学习拓展至模仿学习 扩散策略及VLA模型[15] - 操作任务按复杂程度和自由度递增 硬件演进涵盖多种类型[13] 具身多模态大模型发展 - 具身多模态大模型可弥合感知 认知与动作鸿沟 基础构成包括具身智能体 大语言模型 大视觉模型和视觉语言模型等[16][19] - 核心任务涵盖具身感知 导航 交互和仿真 感知分GPT与非GPT模型 导航分通用与专用模型 交互分短长视域动作策略[19] - 数据集包括Open X-Embodiment和HM3D等 面临跨模态对齐难 计算资源消耗大 领域泛化性弱等技术挑战[19] 具身仿真与研究任务 - 具身AI模拟器存在真实感 可扩展性和交互性问题 研究任务面临长轨迹记忆设计等多重挑战[20][24] - 视觉探索通过运动或感知构建环境内部模型 方法分好奇心驱动 覆盖最大化和重建驱动 核心数据集为Matterport3D和Gibson V1[24] - 视觉导航含点导航 物体导航 带先验导航和视觉语言导航 评估指标以成功率和路径长度加权成功率为主[24] 强化学习在视觉领域应用 - 强化学习在大语言模型中成效显著 近年拓展至视觉多模态领域 面临高维视觉输入等挑战[25] - 基础理论涵盖RLHF DPO和RLVR三大对齐范式 以及PPO和GRPO两种策略优化算法[26] - 核心研究方向包括多模态大语言模型 视觉生成 统一模型和视觉语言动作模型[28] 遥操作与人形机器人 - 人形机器人遥操作可结合人类认知与机器人物理能力 适配人类环境与危险场景如核救援和空间探索[29] - 系统架构含人类状态测量 运动重定向 机器人控制和多模态反馈 支持单向或双向遥操作[32] - 应用包括远程存在和危险作业等 挑战集中在非专家操作门槛 动态环境适应和长延迟稳定性[35] 视觉语言动作模型进展 - VLA模型从跨模态学习架构演化至融合视觉语言模型和动作规划器的通用智能体 涵盖80多个近三年发布的模型[33] - 按架构范式分类 提出基于任务复杂度 模态多样性和数据集规模的新型评估标准 涉及102个VLA模型和26个基础数据集[36] - 发展历程分萌芽 探索和快速发展三阶段 从模型架构 训练数据 预训练方法 后训练方法和模型评估五个维度剖析现状[38] - 横向整合VLA建模实践 提出单体模型与分层模型的分类体系 探索强化学习融合等前沿方向[41]
首个3D动作游戏专用VLA模型,打黑神话&只狼超越人类玩家 | ICCV 2025
量子位· 2025-08-19 05:25
文章核心观点 - 淘天集团未来生活实验室团队提出的CombatVLA模型在3D动作角色扮演游戏的战斗任务中表现出色,成功率超越GPT-4o和人类玩家 [1][4] - CombatVLA是一个3B级别的多模态大模型,通过动作思维(AoT)序列训练,实现了高效战斗决策和50倍加速 [4][8] - 该模型解决了3D战斗场景中的三大挑战:视觉感知、战斗推理和高效推理,并在战斗理解基准测试中全面超越现有模型 [6][11][46] CombatVLA概览 - 视觉-语言-动作模型(VLA)结合视觉、语义和动作控制,推动具身智能发展 [6] - 3D战斗场景面临视觉感知、战斗推理和高效推理三大挑战,现有方案存在泛化能力弱和推理延迟高的问题 [6][7] - CombatVLA基于3B参数规模,能处理视觉输入并输出具体可执行的动作指令,支持键鼠操作 [8] 动作追踪器和评测基准 - 团队开发了动作跟踪器,自动采集大规模训练数据,并建立了战斗理解评测基准CUBench [12][15] - CUBench涵盖信息获取、理解和推理三项核心能力,包含914条数据用于全面测试模型的战斗理解能力 [20][21] - 动作跟踪器在后台运行,监控键盘和鼠标操作以记录用户动作,并同步截取游戏截图 [17][18] CombatVLA模型 - 团队将动作跟踪器采集的数据转化为"动作思维"(AoT)数据,包含动作和解释两部分 [24] - 采用三阶段渐进式训练范式:视频级粗粒度微调、帧级细粒度微调和帧级截断微调 [26][27][29][33] - 训练过程中视觉编码器参数冻结,仅微调语言模型参数,并通过特殊标记实现输出截断加速 [35] 动作执行框架 - 团队开发了轻量级且高效的动作执行智能体,接收实时游戏画面作为输入,输出键鼠动作指令 [36][37] - 推理过程中采用截断输出策略,检测到特殊标记即停止,将内容解析为动作并转换为Python代码执行 [39][40] - 对实时游戏画面进行帧采样,去除冗余视觉信息,降低模型推理负担 [38] 实验结果 - 在CUBench上,CombatVLA取得63.61的最高平均分,比第二名Gemini-2.0-flash高出5.71分 [46] - 在通用基准评测中表现与基座模型相当,验证了方法的稳健性和泛化能力 [47] - 平均推理延迟仅1.8秒,比VARP快约50倍,模型调用成本仅为其1/10 [48][49] - 在任务级实战测试中,CombatVLA在中高难度任务上全面超越基线,并在零样本任务上展现较强泛化能力 [47][55]
聊聊DreamVLA:让机器人先看后想再动
具身智能之心· 2025-08-11 00:14
DreamVLA模型概述 - 提出一种新型视觉-语言-动作(VLA)模型DreamVLA 通过预测环境动态、空间和语义信息提升机器人动作决策精度 [1] - 采用"感知-预测-动作"循环框架 将动作规划视为逆动力学问题 通过预测未来环境状态推导动作 [6][7] - 在CALVIN ABC-D基准测试中平均任务完成长度达4.44 模拟环境性能比前代方法高3.5% 现实世界任务成功率76.7% [25] 技术架构 输入处理 - 多模态输入编码:语言指令(CLIP ViT-B/32文本编码器)、视觉图像(MAE预训练ViT-B模型处理双路摄像头)、机器人状态(可训练编码器) [10][14] - 采用perceiver resampler压缩视觉特征 将196个局部特征向量和全局[CLS] token压缩至可管理规模 [14] 世界知识预测 - 动态区域预测:使用CoTracker光流跟踪算法 通过速度阈值筛选生成二值化动态区域掩码 聚焦移动物体 [12][15] - 深度预测:有深度传感器时直接监督训练 无传感器时采用DepthAnything自监督 输出尺度归一化深度图 [13][16] - 语义预测:并行使用DINOv2(语义向量)和SAM(分割掩码) 通过轻量级ViT解码器输出语义特征 [18][22] 动作生成 - 采用扩散Transformer(DiT-B)作为动作解码器 从高斯噪声逐步生成7维动作向量(6维空间位移+1维抓手状态) [23] - 引入块状结构化注意力机制 结合因果/非因果注意力确保多步动作连贯性 [19] - 使用查询token引导未来世界知识预测 与输入序列拼接后生成世界嵌入 [20] 性能验证 - 消融实验显示动态区域预测贡献最大 深度/语义预测结合动态区域可进一步提升性能 [31] - 结构化注意力机制比普通因果注意力更稳定 分开查询优于共享查询 [31] - 使用DROID数据集(7.6万条轨迹)预训练 仅需100个任务特定演示微调即可展现强泛化能力 [25] 应用前景 - 框架兼容现有VLA模型 特别适合助手机器人和导航场景 [27] - 动态区域掩码能有效抑制背景干扰 深度地图辅助避障 语义特征提升物体交互精度 [17][22]
TACTILE-VLA:激活VLA模型的物理知识以实现触觉泛化(清华大学最新)
自动驾驶之心· 2025-07-16 04:05
核心观点 - 视觉-语言-动作模型(VLA)在接触密集型任务中存在触觉感知缺失的短板,难以实现精细力控制 [2] - Tactile-VLA通过深度融合视觉、语言、动作与触觉感知,激活VLA模型中隐含的物理知识,解决接触密集型任务的力控制与泛化问题 [2][6] - 研究发现视觉-语言模型(VLM)的先验知识中已包含对物理交互的语义理解,通过少量演示即可激活该知识实现零样本泛化 [6] 核心创新与研究目标 关键发现 - VLM的先验知识包含物理交互语义理解,通过触觉传感器连接可激活该知识实现零样本泛化 [6] 主要创新点 - Tactile-VLA框架:首次将触觉感知作为原生模态引入VLA模型,构建多模态深度融合架构 [6] - 混合位置-力控制器:将力目标转化为位置调整指令,解决位置与力控制的协同难题 [6][11] - Tactile-VLA-CoT变体:引入思维链推理机制,基于触觉反馈自主调整策略提升稳健性 [6][15] 主要解决的问题 - 触觉感知的指令遵循:理解"轻柔地""用力地"等力相关语言修饰词 [6] - 触觉相关常识运用:基于物体属性自主调整交互力 [6] - 触觉参与的自适应推理:通过触觉反馈诊断失败并制定纠正策略 [6] Tactile-VLA框架 整体架构 - 多模态深度融合架构包含视觉、语言、触觉和本体感觉输入的统一token表示 [9][11] - 通过非因果注意力机制实现视觉、语言和触觉token的自由交互 [9] 混合位置-力控制机制 - 控制逻辑:以位置控制为主,力误差超过阈值时引入力反馈调整 [11][12] - 双通道分离:外部净力与内部抓取力分离实现精细化调节 [13] 思维链推理机制 - 触发机制:固定间隔评估任务进展,检测失败时启动推理 [18] - 推理流程:判定任务成功与否、分析失败原因、生成纠正指令 [18] 数据收集方法 - 硬件平台:基于通用操作接口(UMI)配备双高分辨率触觉传感器 [19] - 同步机制:100Hz触觉信号与20Hz视觉数据时间对齐 [19] - 标注方式:人类操作员结合触觉反馈提供演示并记录语言指令 [19] 实验验证与结果分析 触觉感知的指令遵循实验 - 任务A(USB插拔):Tactile-VLA成功率达35%,充电器任务中达90% [22][23] - 力控制精度:USB任务中"轻柔地"施加0.51N力,"用力地"施加2.57N力 [23] 触觉相关常识的运用实验 - 域内物体抓取成功率:90%-100%,域外物体达80%-100% [30] - 力调节策略:根据物体属性自主调整力度,如对易碎物体用轻力 [30] 触觉参与的自适应推理实验 - 黑板擦拭任务:Tactile-VLA-CoT成功率达80%,基线模型为0 [28][32] - 推理过程:首次尝试失败后自主增加剪切力并成功完成任务 [32]
TACTILE-VLA:激活VLA模型的物理知识以实现触觉泛化(清华大学最新)
具身智能之心· 2025-07-15 07:55
核心观点 - 视觉-语言-动作模型(VLA)在接触密集型场景中存在触觉感知缺失的短板,难以实现精准力控制与物理交互 [2] - Tactile-VLA框架通过深度融合视觉、语言、动作与触觉感知,激活VLA模型中隐含的物理知识,解决接触密集型任务中的力控制难题 [2] - 研究发现视觉-语言模型(VLM)的先验知识中已包含物理交互的语义理解,通过触觉传感器连接可激活该知识实现零样本泛化 [6] 核心创新与研究目标 关键发现 - VLM的先验知识包含物理交互语义理解,触觉传感器连接可激活该知识实现零样本泛化 [6] 主要创新点 - Tactile-VLA框架首次将触觉作为原生模态引入VLA模型,构建多模态深度融合架构 [7] - 混合位置-力控制器创新性地将力目标转化为位置调整指令,解决位置与力控制协同难题 [7] - Tactile-VLA-CoT变体引入思维链推理机制,基于触觉反馈分析失败原因并自主调整策略 [7] 主要解决问题 - 实现触觉感知的指令遵循、触觉相关常识运用和触觉参与的自适应推理三大能力 [9] 框架设计 整体架构 - 包含多模态编码器、Transformer backbone网络、触觉感知动作专家和混合位置-力控制器四大模块 [13] - 采用token级融合机制,通过非因果注意力实现视觉、语言和触觉token的自由交互 [14] 混合位置-力控制机制 - 以位置控制为主,力误差超阈值时引入力反馈调整,公式ΔF为目标力与实测力差值 [14] - 双通道分离设计:外部净力通过机械臂笛卡尔位置控制,内部抓取力通过夹爪宽度控制 [14] 思维链推理机制 - 按固定间隔评估任务进展,检测失败时启动"判定-分析-生成"三阶段推理流程 [14] - 使用含失败案例和语言注释的小型数据集微调模型,保留通用推理能力 [14] 实验验证 触觉感知的指令遵循 - USB任务中Tactile-VLA成功率35%,充电器任务达90%,显著高于基线模型(最高40%)[21] - 力控制精度:USB任务中"轻柔地"0.51N vs "用力地"2.57N,充电器任务保持区分度(4.68N vs 9.13N)[21] 触觉相关常识运用 - 域内物体抓取成功率90%-100%,域外物体80%-100%,显著高于基线(易碎物体基线接近0)[27] - 能根据物体属性自主调整力度:坚硬沉重物体用大力,易碎物体用轻力 [27] 触觉参与的自适应推理 - Tactile-VLA-CoT黑板任务成功率80%,基线模型和Tactile-VLA(无推理)分别为0和15% [33] - 首次尝试3.5N力失败后,通过推理将力增加到6.7N并成功完成任务 [33]
CEED-VLA:实现VLA模型4倍推理加速,革命性一致性蒸馏与早退解码技术!
具身智能之心· 2025-07-10 13:16
视觉语言动作模型(VLA)加速技术 - 提出CEED-VLA框架,通过Jacobi Decoding和Early-exit Decoding策略实现推理速度提升,最高达4.1倍加速比和执行频率4.3倍提升 [2][6][15] - 引入一致性蒸馏机制与混合标签监督方法,确保学生模型从中间状态准确预测动作,保留操作技能 [9][11][13] - 识别Jacobi解码迭代效率瓶颈,通过提前退出策略优化高频任务执行,保持成功率的同时减少冗余计算 [15][20] 模型架构与训练方法 - 框架基于预训练VLA模型(如LLaVA-VLA)生成训练数据,结合一致性损失(KL散度)和自回归损失进行联合优化 [6][12][14] - 混合标签监督动态调整样本标签,对偏差较大样本采用真实标签,提升模型鲁棒性 [13][19] - 消融实验显示混合标签方案速度提升2倍,平均预测长度3.67,优于纯教师模型或真实标签方案 [19][21] 性能评估结果 - 在CALVIN基准测试中,CEED-VLA固定token数达13.5,速度提升2倍,显著优于PD-VLA(8.75 token,1.33倍)和基线模型 [20] - 真实世界任务(如叠毛巾)成功率超70%,机械臂动作连续性优于LLaVA-VLA,后者因低频控制常出现抓取失败 [30][31] - LIBERO LONG基准测试显示,模型在长序列任务中保持高效执行,任务完成率与推理速度同步优化 [22][23] 技术对比与创新 - Jacobi解码并行输出token但收敛条件严格,Early-exit策略通过预设步数提前输出,利用后期token变化微小特性提升效率 [15] - 一致性训练使中间点收敛至固定点,KL散度约束分布差异,自回归损失继承教师模型能力 [9][12][14] - 开源代码与Arxiv论文提供完整实现细节,包括轨迹收集、蒸馏流程和解码优化 [4][6]
VQ-VLA:大规模合成数据驱动动作tokenizer,推理速度提升近三倍
具身智能之心· 2025-07-02 10:18
视觉-语言-动作模型(VLA)的挑战与改进 - 动作表示效率低:传统连续动作离散化方法难以捕捉复杂时空动态,导致长时域任务中累积误差增大 [3][4] - 数据依赖瓶颈:真实机器人数据采集成本高,限制模型泛化能力 [3][4] 核心贡献 - 通用动作分词器框架:基于卷积残差VQ-VAE的框架替代传统分桶离散化方法 [4] - 合成数据驱动缩放:利用超大规模合成数据(100倍于先前工作)训练分词器,纯合成数据训练的VQ在真实任务接近混合数据性能 [4] - 性能全面优化:长时域任务成功率最高提升30%,动作执行频率从4.16Hz提升至11.84Hz [4][13] 关键技术方案 - 卷积残差VQ-VAE架构:采用2D时序卷积层替代传统MLP,LIBERO-10任务成功率提升6.6%(60.0% vs 53.4%) [7][8] - 残差量化:通过多阶段残差向量量化(RVQ)压缩动作序列 [10] - 渐进式训练策略:嵌入增强(时间嵌入和动作类型嵌入)使"翻正锅具"任务成功率提升5% [11][12] 关键实验发现 - 仿真环境(LIBERO):卷积残差VQ-VAE在LIBERO-10任务成功率60.0%,显著高于MLP版的53.4% [17] - 真实机器人(Franka Research 3):纯合成数据训练的VQ在真实任务表现接近混合数据版本,证实合成-真实域差距极小 [17] - 长时域任务:玩具放入抽屉任务成功率30.0% vs 基线5.0%,所有杯子放入篮子任务成功率50.0% vs 基线15.0% [17] 消融研究与未来方向 - 动作分块机制:VQ分块在LIBERO-90成功率86.61%,显著高于自回归分块的66.53% [19] - 嵌入层贡献:加入时空嵌入使LIBERO-90成功率提升0.99% [19] - 未来方向:整合更大规模合成数据集(如RLBench),结合蒸馏与量化技术进一步加速推理 [19]