Workflow
芯片制造光刻技术
icon
搜索文档
超越EUV光刻,新进展
半导体行业观察· 2025-09-18 02:09
光刻技术演进与Beyond-EUV (BEUV) 发展 - 当前最先进芯片制造依赖EUV光刻技术 工作波长13.5 nm 可实现13 nm(Low NA EUV)、8 nm(High NA EUV)及4-5 nm(Hyper NA EUV)特征尺寸 但系统复杂且成本达数亿美元 [2] - 行业探索"Beyond-EUV"技术 使用6.5-6.7 nm波长激光(软X射线) 理论分辨率可达5 nm及以下 但尚未进入实验工具阶段 [2][3] 波长与反射率的技术挑战 - 光刻分辨率提升依赖缩短波长或增加数值孔径 波长从436 nm(g-line)演进至13.5 nm(EUV)[3][7] - EUV选择13.5 nm因Mo/Si镜反射率达70% 而6.7 nm波长反射率仅61% 且需11次反射 实际透射效率仅为13.5 nm的四分之一 [5] - 6.7 nm波长反射曲线更尖锐(针状 vs 13.5 nm塔状) 对光源和镜面匹配精度要求极高 [6] BEUV技术瓶颈 - 光源尚未成熟 无行业标准方法产生6.7 nm辐射(如钆激光等离子体)[6] - 高光子能量(185-190 eV)与传统光刻胶相互作用差 [6][8] - 6.5-6.7 nm波长易被物质吸收 缺乏高效多层镀膜镜 [6] - 需全新设计光刻工具 缺乏生态系统支持(组件、耗材)[8] 新兴光源技术方案 - 劳伦斯利弗莫尔国家实验室(LLNL)开发BAT激光器 目标将EUV光源效率提升至CO2激光器的10倍 [10][11] - Inversion公司采用LWFA技术 将电子加速至GeV级 光源可调至13.5 nm或6.7 nm 设备尺寸缩小1000倍(从公里级至桌面级)[13] - xLight使用自由电子激光器(FEL) 功率比当前LPP光源高4倍 单系统支持20台ASML设备 降低每片晶圆成本50% 资本支出降3倍 [14][15] - Lace Lithography AS开发原子发射光刻技术 声称领先当前技术15年且成本更低 [14] 光刻胶材料突破 - 约翰霍普金斯大学发现锌等金属可吸收BEUV光并发射电子 引发咪唑化合物反应 实现精细图案蚀刻 [17] - 开发化学液相沉积(CLD)技术 生成aZIF薄膜 生长速度每秒1 nm 可快速测试金属-有机组合 [17] - 锌在13.5 nm EUV下表现不佳 但在6.7 nm波长下高效 至少10种金属和数百种有机物可适配不同波长 [18] 行业合作与未来方向 - xLight加入Blue-X联盟(70个成员组织) 推动6.7 nm波长EUV技术研发 [16] - ASML研发0.75 NA超数值孔径EUV 目标实现更小特征尺寸 [15] - CLD技术可应用于传感器、分离膜等非半导体领域 [18]