Workflow
检索增强生成(RAG)
icon
搜索文档
告别错误累计与噪声干扰,EviNote-RAG 开启 RAG 新范式
机器之心· 2025-09-12 00:51
本文第一作者戴语琴,清华大学博士生。该工作为戴语琴在蚂蚁大安全实习期间完成,该工作属于蚂蚁集团大安全 Venus 系列工作,致力于打造搜索智能体 / UI 智能体。本文通讯作者为该校副教授吕帅,研究方向包括大语言模型、多模态生成、AI4Design。共同通讯作者沈永亮,浙江大学百人计划研究员,博士生导 师,研究方向包括大模型推理、RAG 检索增强生成、多模态生成模型等。 在检索增强生成(RAG)飞速发展的当下,研究者们面临的最大困境并非「生成」,而是「稳定」。 低信噪比 让关键信息淹没在冗余文档里, 错误累计 则让推理链像骨牌一样层层坍塌。这两大顽疾,使得现有 RAG 系统在复杂任务中难以真正可靠。 近期,一项由蚂蚁集团、清华大学、浙江大学、MIT、UC Berkeley、香港大学和新加坡国立大学等机构联合完成的研究提出了全新方案—— EviNote-RAG 。它 不仅在多个权威基准上实现了显著性能提升,更在训练稳定性与推理可靠性上带来了质的飞跃。 核心秘诀在于两个创新: 这一组合带来的改变是革命性的:训练曲线不再震荡,答案推理更加稳健。消融与补充实验进一步验证了这一点—— SEN 是性能提升的基石,而 EQ ...
Qwen3-Max-Preview 上线,官方称系通义千问系列最强大的语言模型
搜狐财经· 2025-09-06 10:03
产品发布与定位 - 公司推出最新语言模型Qwen-3-Max-Preview 该模型是通义千问系列中最强大的语言模型[1] - 模型基于Qwen3系列更新 相比2025年1月版本在推理、指令跟随、多语言支持和长尾知识覆盖方面有重大改进[1][3] - 在数学、编码、逻辑和科学任务中提供更高准确性 更可靠遵循中英文复杂指令 减少幻觉现象[1][3] 技术特性与性能 - 支持超过100种语言 具有更强翻译和常识推理能力[1][3] - 针对检索增强生成RAG和工具调用进行优化 但不包含专门"思考"模式[1][3] - 支持256000上下文长度 最大输出长度为32800 tokens[5] 商业化定价 - 输入token定价为每百万tokens 120美元 按现汇率约合86元人民币[2] - 输出token定价为每百万tokens 600美元 按现汇率约合428元人民币[2] - 根据token长度分段计价:输入超过128K部分每百万tokens 300美元 输出超过128K部分每百万tokens 1500美元[5] 服务提供商与性能 - 阿里云国际作为主要服务提供商 在新加坡节点延迟为068秒[5] - 支持缓存读写功能 读取价格每百万tokens 240美元至600美元[5]
检索增强生成(RAG)的版权新关注
36氪· 2025-08-14 10:11
AIGC技术演进 - AIGC进入2.0阶段,核心是从依赖模型训练生成内容转向整合第三方权威信息提升准确性、时效性和专业性[3] - 技术实现基于检索增强生成(RAG),结合语言生成模型与信息检索技术,2025年国内厂商普遍应用该功能[3] - 亚马逊2025年5月及7月与《纽约时报》、赫斯特、康泰纳仕等传媒集团达成合作,AI产品可实时展示新闻摘要和片段[2] - OpenAI于2025年4月与《华盛顿邮报》合作,ChatGPT输出内容嵌入文章摘要和原始链接,涉及20余家出版商[2] 检索增强生成崛起原因 - RAG由Facebook AI Research团队2020年提出,解决大模型"幻觉"和"时效断层"缺陷[4] - 大模型存在输出不可靠信息问题,例如2023年6月ChatGPT编造针对主持人Frederick Riehl的虚假信息导致诽谤诉讼[5] - 模型知识受训练数据时间限制,如ChatGPT训练语料截止2021年9月,Gemini 2.0截止2024年6月[5] - RAG无需重新训练模型参数,通过实时外部数据提供答案,类比"开卷考试"模式[6] 版权纠纷案例 - 2024年10月美国首例RAG版权诉讼:道琼斯和纽约邮报控股公司诉Perplexity AI,指控爬取数十万篇版权文章[8] - 2025年2月《大西洋月刊》《卫报》等14家出版商起诉Cohere,指控实时抓取内容并输出完整原文[8] - 2025年4月欧盟法院受理匈牙利新闻商Like诉谷歌Gemini案,涉及新闻出版商邻接权[9] - 2024年8月知网向国内AI检索平台发送侵权告知函,指控未经许可使用知网内容数据[9] 作品收集版权问题 - RAG数据检索阶段涉及长期复制和临时复制,长期复制如固定到硬盘或服务器可能构成侵权[11] - 道琼斯案中原告主张Perplexity AI在输入阶段大规模复制文章已构成侵权[11] - 欧盟知识产权局指出动态检索场景下临时保存内容可能适用文本与数据挖掘例外[11] - 若实时检索后内容被本地化存储,仍可能被认定为长期复制[11] 技术保护措施问题 - 规避技术措施如付费墙或登录验证可能违反著作权法,技术措施分为接触控制和利用控制[12] - 道琼斯案中《华尔街日报》付费墙属于接触控制措施,规避行为违反美国《数字千年版权法》[13] - 知网案中访问权限设置涉及技术措施,第三方绕过限制可能构成违法[12] 作品利用侵权类型 - 直接侵权包括侵犯复制权、改编权和信息网络传播权,如《纽约时报》诉OpenAI案中指控实时搜索引用内容[14] - 复制与改编区分参考北京高院指南:未形成新作品属复制,形成新作品属改编[14] - 间接侵权可能因标注盗版网站来源或用户后续传播行为,需结合模型厂商注意义务判定[15] 合理使用争议 - 使用盗版内容构建知识库不构成合理使用,如2025年6月Anthropic案中法院认定下载盗版书籍侵权[17] - 合法获取作品时市场替代性是关键,欧盟报告指出摘要内容若替代原作品访问可能侵权[17] - 日本文化厅规定输出内容若包含原作品独创性表达则不构成合理使用[17] - 规避技术措施与合理使用认定可能分离,但欧盟和日本法规将遵守技术措施作为前提[17] - 输出阶段合理使用取决于复制比例和注明来源,欧盟允许极短摘录引用[18] - 美国版权局认为输出节略版本而非超链接不太可能构成合理使用[19] - 微软允许网站通过robots元标签控制摘录长度,平衡许可费用和用户访问意愿[19]
检索增强生成(RAG)的版权新关注
腾讯研究院· 2025-08-14 08:33
AIGC 2.0阶段:检索增强生成 - 行业进入AIGC 2.0阶段,从单纯依赖模型训练转向整合第三方权威信息以提升内容准确性、时效性和专业性 [6] - 技术层面称为"检索增强生成"(RAG),结合语言生成模型与信息检索技术,国内大模型厂商已普遍增加该功能 [6] - 典型案例包括亚马逊与《纽约时报》、赫斯特、康泰纳仕等传媒集团合作,OpenAI与《华盛顿邮报》及20多家出版商合作 [3][6] 检索增强生成的崛起原因 - 解决传统大模型"模型幻觉"和"时效断层"两大缺陷,如ChatGPT编造虚假信息导致诽谤诉讼 [8][9] - 无需重新训练模型参数,通过实时外部数据提供准确答案,类似开卷考试模式 [10] - 运行过程分为数据检索收集和内容整合展示两个阶段,涉及海量版权作品利用 [11] 现实版权纠纷案例 - 美国首例RAG版权诉讼:道琼斯和纽约邮报控股诉Perplexity AI,指控其爬取数十万篇付费文章 [14] - 14家全球头部新闻出版商联合起诉加拿大Cohere公司,指控其实时抓取并输出完整原文 [14] - 欧盟法院受理首起生成式AI版权案:匈牙利新闻商Like诉谷歌Gemini侵犯邻接权 [14] - 国内知网与某AI检索平台纠纷,涉及学术文献使用争议 [14] 作品收集涉及的版权问题 - 数据检索阶段可能涉及复制权侵权,分为长期复制和临时复制两种情形 [17] - 构建检索增强数据库时的向量化处理可能构成长期复制,如Perplexity AI案中原告指控 [17] - 实时检索场景下若仅临时保存内容,可能适用文本与数据挖掘例外规则 [17] 技术保护措施问题 - 绕过IP限制或破解动态加载可能违反著作权法"技术措施"规定 [19] - 技术措施分为接触控制措施(如付费墙)和利用控制措施,规避前者构成违法 [20] - 美国《数字千年版权法》第1201条对技术措施提供双重保护体系 [20] 作品利用涉及的侵权问题 - 内容整合展示阶段可能构成直接侵权(复制权、改编权、信息网络传播权)或间接侵权 [22] - 直接侵权认定参考标准:未形成新作品属复制行为,形成新作品属改编行为 [22] - 间接侵权情形包括标注盗版来源扩大传播,或用户后续侵权传播中模型厂商存在过错 [23] 合理使用之争 - 数据检索阶段合理使用认定关键在"市场替代性",盗版内容构建知识库不构成合理使用 [26][27] - 日本区分"非欣赏性利用"和"轻微利用",欧盟要求遵守技术措施作为合理使用前提 [27][28] - 内容展示阶段合理使用核心在于复制比例和注明来源,各国标准不一 [28] - 美国版权局认为提供节略版本而非超链接不太可能构成合理使用 [28]
万字长文!RAG实战全解析:一年探索之路
自动驾驶之心· 2025-08-07 09:52
背景介绍 - RAG(检索增强生成)方法结合了检索模型和生成模型的能力,以提高生成文本的质量和相关性 [1] - 该方法由Meta在2020年提出,让语言模型能够获取内化知识之外的信息,并以更准确的方式回答问题 [1] - 在大模型时代,RAG用于解决幻觉问题、知识时效问题和超长文本问题等大模型本身的制约或不足 [1] RAG的挑战 - 主要面临三个方面的挑战:检索质量、增强过程和生成质量 [2] - 检索质量方面存在语义歧义、用户输入变复杂、文档切分和多模内容提取等挑战 [5] - 增强过程面临上下文集成、冗余和重复、排名和优先级等挑战 [5] - 生成质量方面存在过度依赖检索内容、无关性、毒性或偏见等问题 [5] 整体架构 产品架构 - 包含模型层、离线理解层、在线问答层和场景层四层 [11] - 模型层支持自研序列猴子、开源大模型和第三方模型,并优化跨语言Embedding模型 [11] - 离线理解层包括智能知识库和搜索增强模块,负责非结构化文本处理和检索精准度 [11] - 在线问答层支持多文档、多轮次、多模态及安全性与拒识等功能 [11] - 场景层针对不同行业特点预制多种场景类角色 [11] 技术架构 - 分为query理解、检索模型和生成模型三个主要组成部分 [10] - query理解模块包括query改写、扩写和意图识别等,旨在提高召回率 [12] - 检索模型从文档集或知识库中检索相关信息,使用信息检索或语义搜索技术 [12] - 生成模型根据Prompt或上下文生成新内容,包括chat系统和Prompt优化等 [13] Query理解 - 引入query理解模块解决用户query措辞不利于检索和生成结构化查询的问题 [14] - 意图识别模块利用LLM实现决策功能,可应用于选择器模块或查询引擎 [15] - query改写模块利用LLM重新措辞用户query,提高检索效果 [16] - HyDE技术生成假设答案并转换为嵌入,从数据库中检索最接近的实际文档 [17] - query扩写模块将复杂问题拆解为子问题,采用分而治之的方法处理 [22] - Step-Back Prompting通过抽象和推理两步处理复杂任务 [23] - CoVe技术通过验证和完善回答提高大型语言模型答案的可靠性 [25] - RAG-Fusion生成多个query并行执行搜索,使用倒数排名融合重新排序 [27] - ReAct将复杂查询分解成更简单的子查询,结合思维链提示和Action计划生成 [29][31] - query重构模块通过一次请求实现改写、拆解和拓展用户输入 [32] 检索模型 挑战 - 依赖于Embedding模型的向量化是否准确 [33] - 相关信息出现在输入上下文开头或结尾时性能最高,中间性能明显下降 [34] 架构 - 包括文档加载器、文本转换器、文本嵌入模型、向量数据库和索引等组件 [35][37] 文档加载器 - 从配置源加载文档数据,支持懒加载和多种来源如txt文件、网页和YouTube视频 [38] 文本转换器 - 将大型文档分割成较小块,适应模型上下文窗口 [39] - 递归分割文本保持相关文本片段在一起 [40] - 常见类型包括HTML、Markdown、Code、Token和Character等 [43] - 使用Chunkviz工具评估文本转换器工作情况 [44] 文本嵌入模型 - 创建文本的向量表示,捕捉语义并支持语义搜索 [45] - 应具备跨语种检索、长原文和短摘要关联、不同表述相同语义关联等能力 [45] 向量数据库 - 支持嵌入式的高效存储和搜索,检索与嵌入查询最相似的嵌入向量 [47] 索引 - 摘要索引将节点存储为顺序链,支持顺序遍历或基于关键词过滤 [51] - 树索引构建层级树状结构,父节点是子节点的摘要 [53] - 关键词表索引提取关键词并构建多对多映射 [55] - 向量索引利用文本嵌入模型将文本块映射成向量并存储在向量数据库中 [57] 排序和后处理 - 基于相似度分数、关键词、LLM重新排序或时间进行过滤和排序 [59] 生成模型 - 回复生成策略包括依次结合相关文本块修正回复或在Prompt中填充多个文本块 [66] - prompt拼接策略包括字符串提示和聊天提示 [61] - 字符串提示连接模板,聊天提示由消息列表组成 [62][63] 插件 - 基于混合演示检索的上下文学习方法融合文本检索和语义检索进行多路召回 [64] - 检索模块包括文本检索和语义检索,分别采用BM25和双塔模型 [70] - 重排模块使用倒序排序融合算法和两端填充排序策略 [71] - 生成模块设计prompt组装模块,融入长期和短期对话记录 [72] 引用或归因生成 - 归因让模型生成内容与参考信息对齐,提供证据来源确保信息准确性 [73] - 模型生成方法直接让模型生成归因信息,依赖模型能力 [75] - 动态计算方法在流式生成时匹配语义单元和参考源 [76] 评估 - Faithfulness评测生成的回答是否忠实于contexts,避免幻觉 [79] - Answer Relevance评测生成的答案是否解决实际问题 [79] - Context Relevance评测检索的上下文是否重点突出且少含无关信息 [79] - RGB基准研究RAG对大型语言模型的影响,分析噪声鲁棒性、拒答等能力 [77] - RAGAS框架对RAG pipeline进行无参考评估,考虑检索系统和LLM能力 [81] - LlamaIndex提供衡量生成结果质量和检索质量的模块 [81] 总结 - RAG技术需要不断实践和研究才能打磨出符合企业应用的精品 [82] - 本文总结了过去一年在RAG实践的关键模块,属于大纲式技术普及文章 [82]
忘掉《Her》吧,《记忆碎片》才是 LLM Agent 的必修课
Founder Park· 2025-07-29 08:05
行业趋势演变 - AI行业叙事从Chatbot(聊天机器人)转向Agent(智能体)成为主流 讨论焦点从"意图识别"和"多轮对话"变为"任务分解"、"工具调用"和"自主规划" 行业热度堪比2016年移动互联网爆发期 [4] - 电影《Her》定义了Chatbot范式的终极形态 而《记忆碎片》的主角莱纳德被视为Agent的完美隐喻 展示系统如何在信息不完整环境下为目标思考与行动 [5] Agent系统架构 - 上下文工程是围绕LLM有限注意力窗口设计的信息管理技术栈 目标是为每个决策点提供恰到好处的信息 决定Agent成败 [5] - 莱纳德的记忆系统对应LLM三大特征:长期记忆如同训练数据(静态知识库) 短期记忆如同上下文窗口(15分钟记忆限制) 行动驱动类似Agent任务导向 [9] 上下文工程三大支柱 外部知识管理 - 拍立得照片系统对应RAG技术 实现知识管理闭环:选择性记录任务关键信息 而非存储所有数据 避免检索时信息过载 [17][20] - 完整流程包括信息采集固化(拍照)、上下文标注(背面笔记)、按需调用(匹配检索) 体现RAG核心价值 [23] 上下文提炼结构化 - 将信息从照片升级到纹身 代表信息提炼压缩过程 只保留经过验证的核心断言(如"事实5") 并物理结构化确保读取优先级 [22][29] - Agent需成为信息炼金术士 对冗长信息进行压缩总结 在有限Token预算内最大化信息密度 避免"大海捞针"困境 [25] 分层记忆管理 - 三层架构:核心任务层(不可变纹身)、情景工作层(可读写照片)、瞬时处理层(易失性大脑记忆) 实现高效记忆调度 [30] - 需明确定义信息层级 区分宪法级指令、任务日志和临时缓存 防止Agent迷失在海量操作日志中 [28] Agent系统风险 - 上下文投毒风险:外部恶意输入可能导致Agent将错误信息当作真理输出 呈现"垃圾进真理出"现象 [32] - 自我强化认知牢笼:Agent在多步任务中可能将前序错误结论当作事实 缺乏独立审查机制导致偏差放大 [33][34] 系统优化方向 - 缺失反思模块是当前Agent核心缺陷 需建立验证机制比对行动结果与预期差距 生成误差报告指导后续行动 [35] - 构建可靠行动系统比单纯追求自主性更重要 需防止创造高效但永不怀疑的"莱纳德军队" [36]
梳理了1400篇研究论文,整理了一份全面的上下文工程指南 | Jinqiu Select
锦秋集· 2025-07-21 14:03
文章核心观点 - 上下文工程已成为优化大语言模型性能的关键技术领域 通过系统化框架整合信息获取 处理和管理三大组件 可显著提升模型在复杂任务中的表现 [1][2] - 当前技术面临模型理解与生成能力不对等 长序列处理效率低下以及多模态整合不足等核心挑战 需要突破传统Transformer架构限制 [135][136] - 模块化RAG系统 内存增强型智能体和工具集成推理等实现范式正在推动AI从被动文本生成器向主动世界交互器进化 [68][91][109] Context Engineering技术体系 信息获取与生成 - Prompt Engineering通过Zero-Shot Few-Shot及Chain-of-Thought等高级推理框架激发模型潜力 其中Tree-of-Thoughts在24点游戏中将成功率提升至70%以上 [4][5] - Self-Refinement机制实现模型自我迭代 N-CRITICS采用集成学习思路 而Agent-R通过蒙特卡洛树搜索实时纠正推理路径 [9][10][11] - RAG架构突破模型知识边界 进阶方案如Self-RAG引入自适应检索 HippoRAG模仿人类记忆机制补充关联信息 [14][15] 信息处理 - 长上下文处理依赖架构革新 Mamba等状态空间模型将计算复杂度降至线性 LongNet的Dilated Attention理论支持十亿级token处理 [29][30] - 位置插值技术无需微调即可扩展上下文窗口 YaRN和LongRoPE实现数千到数百万token的跨越 配合FlashAttention-2带来近2倍速度提升 [31][32] - 多模态融合面临模态偏见挑战 先进方法采用交叉注意力机制或统一预训练 结构化数据处理中代码表示效果优于自然语言描述 [41][43] 信息管理 - 内存架构借鉴操作系统概念 MemGPT实现虚拟内存式换页 MemoryBank基于艾宾浩斯曲线动态调整记忆强度 [49][51] - 上下文压缩技术显著降低计算负担 ICAE实现数倍压缩率 ACRE双层KV缓存系统兼顾全局视野与局部细节 [58][60] - 应用场景覆盖法律合同分析 多季度财报推导等长程依赖任务 以及具备持续学习能力的对话式AI [63][66] 系统级实现 RAG系统演进 - 模块化RAG实现乐高式灵活组合 FlashRAG提供5核心模块16子组件 ComposeRAG支持原子化问题分解与自我反思优化 [72][73] - Agentic RAG赋予自主智能体能力 如调查员般执行动态检索 Self-RAG通过反思token形成闭环自优化系统 [74][75] - 图增强RAG转向结构化知识表示 GraphRAG采用社区发现算法分层索引 HippoRAG利用PageRank提升多跳问答性能 [76] 内存增强型智能体 - 记忆系统分类涵盖短期工作内存与长期持久化存储 后者通过外部存储解决上下文窗口限制 [82][83] - REMEMBERER框架实现经验记忆 LangGraph等工具集成RAG与向量数据库 Mem0结合图数据库提升检索效率 [84][85] - 评估框架LongMemEval揭示商业AI助手在长时间交互后准确率显著下降 反映记忆持久性不足的行业痛点 [87] 工具集成推理 - Function Calling技术路径分化 微调方法稳定性高但资源密集 提示工程方案如Reverse Chain更轻量灵活 [95][96] - 训练数据生成策略成熟 APIGen分层验证流程支持数千API覆盖 Hammer框架通过函数掩码增加训练难度 [97] - 多智能体协作框架展现集体智慧 DyLAN实现精密任务拆解 MetaGPT增强专业化分工 MAD优化并行处理能力 [109] 评估与挑战 - 组件级评估需针对性设计 如"大海捞针"测试长上下文处理 结构化数据集成需关注序列与结构信息冲突场景 [124][125] - 系统级评估暴露协同问题 Agentic RAG需测试任务分解准确性 工具集成系统需覆盖完整交互轨迹 [126][127] - 新兴基准如GTA显示GPT-4完成率远低于人类 反映真实场景性能差距 为创业者指明改进方向 [128][129]
Multi-Agent 协作兴起,RAG 注定只是过渡方案?
机器之心· 2025-07-19 01:31
从 RAG 检索增强到多层级状态演化,AI memory 系统崛起 - AI memory 系统正从短期响应向长期交互演进,为智能体注入持续经验能力 [2] - MemoryOS 采用层次化存储架构,将对话 memory 分为短期、中期和长期三层,通过 FIFO 和分段分页机制实现动态迁移 [2] - MemGPT 借鉴操作系统思想,将固定长度上下文视为主内存,通过函数调用在主上下文和外部存储间分页调度,支持大文档分析和多轮会话 [2] - ChatGPT Memory 采用检索增强生成(RAG)方式,通过向量索引检索用户相关信息并注入模型输入,实现对用户偏好和历史信息的记忆 [2] - RAG 侧重外部知识库检索和静态知识注入,依赖向量索引 [2] - AI Memory 注重状态持续性,需维护多层级 memory 架构并管理时序与优先级,结合删除或压缩机制调度有限资源 [3] - RAG 与 Memory 可互补,RAG 增强知识性,Memory 固化对话经验和连贯性 [3] 从模态融合到隐私权限,AI memory 正面临哪些挑战 - AI memory 系统面临静态存储无法演化、多模态多 Agent 协同混乱、检索扩容冲突等技术挑战 [4] - 需解决层级和状态过滤缺失、企业级多任务权限控制、隐私可控性弱等问题 [4] - 挑战驱动 memory 系统向更智能、更安全、更高效方向演进 [4]
为什么2025成了Agent落地元年?
虎嗅APP· 2025-07-18 10:20
行业趋势与格局演变 - 2023年生成式AI领域呈现"百模大战"格局,融资和刷榜是主要特征,但2024年市场迅速收敛至少数玩家的资本与技术持久战 [2] - 行业关注点从模型性能转向落地价值,核心命题转变为如何将大模型能力转化为业务生产力 [2] - Agent成为大模型落地的关键解决方案,AWS将其作为推动千行百业业务重构的核心技术 [3][4] Agent技术崛起驱动因素 - 大模型发布会普遍强调工具调用能力指标,如Kimi K2、Grok 4、Minimax M2和OpenAI最新ChatGPT Agent均聚焦多工具集成 [6] - Agentic AI爆发两大原因:Agent编排框架成熟(CrewAI/LangGraph/LlamaIndex)和标准化协议出现(MCP/A2A) [10] - LangChain调查显示超50%公司已部署Agent,80%正在研发;Gartner预测2028年33%企业软件将采用Agentic AI [10] AWS Agent解决方案架构 - Amazon Bedrock AgentCore提供七大模块降低构建门槛:Runtime(无服务器环境)、Memory(记忆系统)、Observability(可观测性)、Identity(身份管理)、Gateway(网关服务)、Browser(浏览器功能)、Code Interpreter(代码解释器) [15][16][17][18] - 解决方案支持按需组合使用,兼容主流AI框架与协议(MCP/A2A),内置企业级安全管控 [19] - 针对企业级需求推出S3 Vectors向量数据库(成本降低90%)、Amazon Nova模型定制功能、AI IDE产品Kiro(规范驱动开发/智能代理钩子) [22][25][26] 技术落地与商业化进展 - AWS Marketplace已上架上百种AI Agents & Tools,支持自然语言搜索直接部署 [11] - 当前Agent供需存在缺口,通用性Agent难以解决行业独特问题,需解决六大核心挑战:安全扩展、记忆系统、权限细化、复杂工作流工具、资源发现、交互追溯 [12] - S3 Vectors创新性实现冷热数据分层存储(低频存S3/高频存OpenSearch),支持10,000索引/数千万向量规模 [23][24] 行业变革特征 - 本轮AI浪潮区别于历史的关键在于:模型通用能力+基础设施成熟度(框架/数据库/接口/工具链)推动Agent从概念验证走向规模化落地 [29] - 技术革命本质体现为通过AWS等平台降低定制化门槛,使Agent成为各行业企业的专属解决方案 [30]
1万tokens是检验长文本的新基准,超过后18款大模型集体失智
量子位· 2025-07-17 02:43
大模型长上下文性能研究 核心发现 - 主流大模型在输入长度增至1万tokens时准确率普遍降至50%,且性能衰减呈非均匀断崖式下降[4][10][21] - 性能衰减受语义关联性、干扰信息、文本结构等多因素影响,其中低相似度组在1万tokens时准确率比高相似度组低20个百分点[18][21] - 不同模型衰减节点存在差异:GPT-4.1可能在短文本即出现性能骤降,Claude系列则表现出更强的长文本稳定性[7][28] 实验设计方法论 - 采用改进版NIAH测试框架,通过四项对照实验控制任务复杂度并隔离输入长度变量[16][17] - 实验数据源包括保罗・格雷厄姆散文和arXiv论文,设置10²至10⁴tokens的输入长度梯度[18][31][37] - 评估指标采用GPT-4.1验证的准确率(与人类判断一致性超99%)[18][33] 关键影响因素 语义关联性 - 针-问题相似度实验显示:低相似度组在1万tokens时准确率降至40%-60%,比高相似度组低20个百分点[18][21] - 针-干草堆相似度对模型影响不统一,但长文本下所有模型性能均显著下滑[31][34] 干扰信息 - 多重干扰项使模型在1万tokens时准确率比基线低30%-50%[26][29] - GPT系列易生成自信错误答案,Claude系列倾向弃权,Gemini和Qwen波动最大[28] 文本结构 - 连贯结构文本在1万tokens时部分模型准确率降至30%-40%,打乱结构则维持50%-60%[40][42] - 逻辑结构复杂度与性能衰减正相关,揭示模型处理长文本逻辑的缺陷[35][41] 行业技术动态 - Chroma团队开源测试代码,覆盖18个主流开源/闭源模型包括GPT-4.1、Claude 4等[8][49] - 研究验证了现有基准测试将输入长度与任务难度混谈的局限性[13][15] - 行业正探索1M上下文窗口技术(如Gemini 1.5 Pro),但实际长文本处理能力仍存瓶颈[12][44]