OpenVLA

搜索文档
没有导师指导,最快多久可以产出一篇具身领域相关论文?
具身智能之心· 2025-09-28 07:00
那么VLA是什么? 最近有同学后台留言,刚开学导师跨行做具身,让自己先去摸索下,最好能产出论文和项目。没有基础最 快能多久出论文? 针对跨行或者新入门的同学,我们一直建议先把基础打好。然后找一些研究价值比较大的领域突破。特别 是有一定的工作基础、数据基础的领域,如果完全不成熟,没有人同行后期科研的难度很大。 从今年各个机器人与AI顶会来看,VLA及其相关衍生方向,占据了近一半的具身产出。特别是长程操作、 泛化、少样本、VLA+RL、人形相关。如果有同学不知道怎么选择方向,可以多关注这个领域!具身智能 之心最近也出品了一套1v6的科研辅导论文课程,也欢迎关注报名。 从产业角度看,国内外具身智能领域正处于蓬勃发展阶段,Unitree、智元、星海图、银河通用、逐际动力 等团队从实验室走向商业化,华为、京东、腾讯等科技巨头也积极布局,与国外Tesla、Figure AI等公司正 在一起推动这一领域的发展。 很多同学后台留言,咨询VLA相关的论文辅导,希望能够快速入门或转型。VLA作为目前的研究热点,还 有很多问题没有解决,确实是发论文的好方向。但相关体系过于庞大,路线、仿真框架较多,如何写稿、 投稿也都是技巧。具身智 ...
VLA的论文占据具身方向的近一半......
具身智能之心· 2025-09-18 04:00
VLA技术发展现状 - VLA及其相关衍生方向占据近一半的具身产出 包括长程操作 泛化 少样本 VLA+RL 人形相关等领域[1] - VLA打破传统单任务局限 使机器人能在多样化场景中自主决策 灵活应对未见过环境 广泛应用于制造业 物流和家庭服务等领域[1] - 推动多个前沿项目发展 包括pi0 RT-2 OpenVLA QUAR-VLA和HumanVLA 促进学术界与工业界合作[1] - 适应多种机器人平台 包括机械臂 四足机器人和人形机器人 为智能机器人发展提供广泛潜力和实际应用价值[1] 产业生态布局 - 国内外具身智能领域处于蓬勃发展阶段 Unitree 智元 星海图 银河通用 逐际动力等团队从实验室走向商业化[3] - 科技巨头积极布局 包括华为 京东 腾讯等国内企业与国外Tesla Figure AI等公司共同推动领域发展[3] 科研培训体系 - 课程聚焦智能体通过感知-认知-行动循环与物理世界交互 详细剖析VLA范式技术演进[7] - 涵盖从早期抓取位姿检测到行为克隆 再到近期Diffusion Policy和多模态基础模型的技术发展路径[7] - 深入分析具身智能核心挑战 包括跨域泛化 长期规划与世界模型构建[8] - 研究如何将大型语言模型推理能力与机器人控制系统结合 实现从高级任务描述到低级运动规划的有效转换[8] - 探讨PaLM-E RT-X等模型通过多模态预训练和微调策略增强机器人开放环境适应性和鲁棒性[8] - 关注前沿发展方向 包括多模态感知融合 触觉反馈整合 基于物理的推理以及社会互动能力[8] 课程特色与产出 - 培养独立学术研究能力 系统性梳理隐式端到端 显式端到端 分层端到端三大VLA模型体系[9] - 提供从理论到实践全链路培养 包含仿真环境搭建 实验设计与论文撰写全过程指导[10] - 传授学术研究方法论 包括论文写作 文献阅读 创新点提炼等研究者必备技能[10] - 分析领域研究热点与未解决难点 包括长期记忆 VLA+RL原子技能库构建 动作解码问题 多模态思维链等前沿方向[13] - 通过个性化研究指导 帮助学生形成研究idea并完成初步实验 掌握将研究成果转化为高质量学术论文的能力[10][13] - 课程最终产出包括论文初稿 并使学生全面掌握具身智能VLA模型理论基础与技术演进路径[14] 技术要求 - 推理要求4090以上算力 训练算力建议4卡4090(可租借)[15] - 需要一定pytorch和python基础 能够自行修改代码[15]
卷VLA,提供一些参考方向......
具身智能之心· 2025-09-15 10:00
VLA模型技术价值 - VLA模型整合视觉信息、语言指令和行动决策,显著提升机器人对复杂环境的理解和适应能力 [1] - 该范式打破单任务训练局限,推动机器人向通用化、场景泛化方向发展 [1] - 能够实现从视觉输入和语言指令到机器人动作的端到端映射,应用于复杂任务规划和执行 [8] 产业应用与商业化进展 - 广泛应用于制造业、物流和家庭服务等领域,支持机械臂、四足机器人和人形机器人等多种平台 [3] - 国内外具身智能领域处于蓬勃发展阶段,Unitree、智元、星海图、银河通用、逐际动力等团队从实验室走向商业化 [5] - 华为、京东、腾讯等科技巨头与Tesla、Figure AI等国际公司共同推动领域发展 [5] 前沿研究项目 - 推动多个前沿项目发展包括pi0、RT-2、OpenVLA、QUAR-VLA和HumanVLA [3] - RT-2、OpenVLA和PI0等模型实现从视觉输入和语言指令到动作的端到端映射 [8] - PaLM-E、RT-X等模型通过多模态预训练和微调策略增强机器人环境适应性和鲁棒性 [9] 技术演进路径 - 技术演进涵盖从早期抓取位姿检测到行为克隆,再到近期Diffusion Policy和多模态基础模型 [8] - 关注多模态感知融合、触觉反馈整合、基于物理的推理以及社会互动能力等前沿发展方向 [9] - 研究如何将大型语言模型推理能力与机器人控制系统结合,实现高级任务描述到低级运动规划的转换 [9] 核心研究挑战 - 面临跨域泛化、长期规划与世界模型构建等核心挑战 [9] - 未解决难点包括长期记忆、VLA+RL原子技能库构建、动作解码问题、多模态思维链等多个前沿方向 [15] - 突破"看得见但摸不着"、"只关注当下不能预测未来"等局限性,向通用机器人智能迈进 [9]
当老师给我指了VLA作为研究方向后......
具身智能之心· 2025-09-10 11:00
VLA科研背景与介绍 VLA,Vision-Language-Action模型,是具身智能领域的新范式,从给定的语言指令和视觉信号,直接生成出机 器人可执行的动作。这种范式打破了以往只能在单个任务上训练大的局限性,提供了机器人模型往更加通用,场 景更加泛化的方向发展。VLA模型在学术界和工业界的重要性主要体现在其将视觉信息、语言指令和行动决策 有效整合,显著提升了机器人对复杂环境的理解和适应能力。 VLA打破了传统方法的单任务局限,使得机器人能够在多样化的场景中自主决策,灵活应对未见过的环境,广 泛应用于制造业、物流和家庭服务等领域。此外,VLA模型已成为研究热点,推动了多个前沿项目的发展,如 pi0、RT-2、OpenVLA、QUAR-VLA和HumanVLA,这些研究促进了学术界与工业界的合作。其适应性体现在能 够应用于机械臂、四足机器人和人形机器人等多种平台,为各类智能机器人的发展提供了广泛的潜力和实际应用 价值,成为智能机器人领域的关键驱动力。 从产业角度看,国内外具身智能领域正处于蓬勃发展阶段,Unitree、智元、星海图、银河通用、逐际动力等团 队从实验室走向商业化,华为、京东、腾讯等科技巨头也积 ...
机器人操控新范式:一篇VLA模型系统性综述 | Jinqiu Select
锦秋集· 2025-09-02 13:41
文章核心观点 - 基于大型视觉语言模型(VLM)的视觉-语言-动作(VLA)模型是机器人操控领域的变革性范式,通过语义理解和推理能力显著提升机器人在非结构化环境中的泛化执行能力 [1][4][5] - 哈尔滨工业大学(深圳)团队首次提出系统性分类法,将VLA模型划分为单体模型(Monolithic Models)和层级模型(Hierarchical Models),以解决架构多样性和研究碎片化问题 [1][6][8] - VLA模型与强化学习、免训练优化、人类视频学习和世界模型等前沿技术结合,未来方向包括记忆机制、4D感知和多智能体协作等 [1][58][91] 背景与演进 - 传统机器人操控方法依赖预定义任务规范,在非结构化环境中泛化能力有限,而VLM通过海量图文预训练跨越视觉与语言的语义鸿沟 [4][9][11] - 现代VLM(如LLaVA1.5、Qwen-VL)采用三组件架构:视觉编码器、投影器和大型语言模型,统一处理多模态任务并支持高级推理能力 [9][10] - VLA模型将机器人动作处理为文本token,与语言输出联合训练,实现语义理解能力飞跃(如RT-2相比RT-1在未见过指令任务上成功率显著提升) [12][13] 单体模型(Monolithic Models) - 单系统架构(如RT系列、OpenVLA)统一处理视觉、语言和动作生成,通过自回归解码生成动作token,参数量达70亿级别 [14][17][18] - 双系统架构(如π0、CogACT)分离快速反应的动作专家与慢速推理的VLM骨干,通过级联或并行方式协作,推理速度提升3倍以上 [15][35][30] - 性能增强方向包括3D/4D感知(如SpatialVLA、TraceVLA)、多模态融合(触觉、音频)和推理优化(动态token剪枝、1-bit量化) [21][23][31] 层级模型(Hierarchical Models) - 规划器+策略架构明确解耦高层规划与底层执行,生成可解释中间输出(如关键点、程序代码),支持长时程任务 [43][44][53] - 仅规划器方法(如Chain-of-Modality)生成可执行程序或文本指令,而规划器+策略模型(如HiRobot)通过扩散策略执行原子命令 [44][49][53] - 基于关键点的方法(如HAMSTER、RoboPoint)预测交互区域或轨迹路点,结合优化器生成动作,在7个泛化轴向上成功率提升20% [45][51][80] 前沿领域结合 - 强化学习通过密集奖励信号(如VLA-RL的RPRM模型)和离线-在线混合训练(如ReWiND)解决长时任务稀疏奖励问题 [59][60][61] - 免训练方法(如FlashVLA、EfficientVLA)通过触发机制和token复用跳过冗余计算,实现最高5倍训练加速 [62][63][64] - 人类视频学习(如UniVLA、LAPA)对齐人类-机器人交互特征,世界模型集成(如WorldVLA)通过预测未来状态优化动作规划 [65][66][68] 模型特性 - 多模态融合通过共享嵌入空间实现视觉、语言和动作的token级对齐,支持深度、触觉等模态扩展(如PointVLA集成点云数据) [69][71][73] - 指令遵循能力支持语义锚定(如ChatVLA-2理解白板数学问题)和思维链推理(如CoT-VLA预测视觉子目标) [74][76][75] - 跨领域泛化能力显著,如DexVLA实现跨机器人形态技能迁移,π0.5在分布外数据上成功率超90% [78][79][80] 数据集与基准 - 真实世界数据集(如OXE)整合22个机器人平台超100万演示,覆盖500多种技能,但长尾分布数据仍不足 [82][83][84] - 仿真基准(如BEHAVIOR、ALFRED)支持多阶段语言指令任务,CALVIN提供无约束指令下的长时程行为学习 [85][86] - 人类行为数据集(如Ego4D、EPIC-Kitchens)提供829小时密集手部追踪视频,支持精细化操作学习 [87][88] 未来方向 - 需开发融合真实世界复杂性和长期任务评估的基准,包含子任务成功率和抗干扰性等指标 [91] - 技术突破重点包括4D感知(整合深度与时间演化)、移动操作(导航与抓取协同)和多智能体协作(共享世界模型) [93][94][96] - 模型效率优化需平衡计算资源与实时需求,通过动态token剪枝和硬件友好量化降低延迟 [98]
后端到端时代:我们必须寻找新的道路吗?
自动驾驶之心· 2025-09-01 23:32
行业技术发展趋势 - 2025年VLA(Vision-Language-Action)成为行业新焦点,但技术路径出现明显分歧,部分企业积极推广而部分头部团队选择回避 [1][5][6] - 相较于2023-2024年端到端技术达成行业共识的局面,VLA技术路线呈现"分歧中的探索"态势 [5][6] - 技术切换期被视为占领用户心智和证明研发优势的关键窗口 [4] 企业战略布局差异 - 理想汽车通过VLA巩固端到端技术红利带来的领先优势 [4] - 元戎启行借助VLA提升辅助驾驶系统性能上限 [4] - 小鹏汽车将具身智能领域积累的VLA技术迁移至辅助驾驶系统,并采用自研高算力芯片解决实时性问题 [4][22] - 华为ADS明确主张WA(World Model + Action)为自动驾驶终极方案,回避VLA路径 [5] - 蔚来在低速场景应用世界模型但对外宣传保持低调 [5] - 地平线否认其HSD系统属于VLA,坚持VA(Vision-Action)技术路线 [23] VLA技术原理与应用 - VLA通过视觉模块感知环境、语言模块表述任务、动作模块执行驾驶行为,实现感知-决策一体化 [9] - 技术优势在于结合端到端的性能与语言的可解释性,理想状态下可映射人类驾驶本能 [10] - Wayve的LINGO系列实现边驾驶边用自然语言解释决策,LINGO-2支持实时语言指令调整行为 [12] - OpenDriveVLA融合2D/3D视觉token与语言生成控制轨迹,在Nuscenes数据集取得最优结果 [14][16] - 谷歌Deepmind的RT系列将互联网视觉-语言知识迁移至机器人控制,提升泛化能力 [17][18] 技术挑战与局限性 - 自然语言存在模糊性与不完备性,例如"慢一点"等指令缺乏精确动作约束 [19] - 语言-动作不对称性问题导致监督学习存在噪声,语言主要在任务级别有效而非细粒度控制 [19] - 多模态Transformer推理开销巨大,OpenVLA模型约7B参数需15GB显存且运行频率仅6Hz,低于行业10Hz标准 [21] - 实际部署中多用于上层任务分配,轨迹输出仍由传统模型执行并需兜底机制 [23] 替代技术路径发展 - VA(Vision-Action)方案通过内隐世界模型实现环境状态向量化表示,华为与地平线采用此路径 [23] - 地平线HSD系统通过深度神经网络实现决策统一性,在不同场景下保持自适应行为 [25] - 采用平衡数据分布并筛选优化人类驾驶数据,使决策更符合直觉 [25] - 坚持模块最小化架构,屏蔽激光雷达输入以避免感知依赖,保持系统简洁性与可维护性 [28] - 纯视觉版本结合软硬件一体方案具备成本优势 [31] 行业本质问题与未来方向 - 辅助驾驶核心问题仍是缺乏对世界的深度理解能力 [33] - 语言作为新输入维度类似激光雷达,提供抽象能力但非终极解决方案 [33] - 行业面临选择新道路或深化现有路径的战略抉择,不同技术路线均存在发展机会 [34]
RLinf开源!首个面向具身智能“渲训推一体化”的大规模强化学习框架
具身智能之心· 2025-09-01 04:02
文章核心观点 - 清华大学、北京中关村学院和无问芯穹联合推出面向具身智能的大规模强化学习框架RLinf 该框架通过创新的混合式执行模式、统一编程接口和自适应通信机制 在具身智能训练场景下实现系统提速超120% 模型性能提升40%-60% 同时支持数学推理大模型训练并取得SOTA性能[5][7][9][24][29] 技术架构设计 - 系统采用六层级抽象架构 包括用户层、任务层、执行层、调度层、通信层和硬件层 支持混合式执行模式[7] - 提出宏工作流到微执行流映射机制(M2Flow) 实现过程式编程灵活性与声明式编程优化能力的结合[14] - 支持三种执行模式:共享式(组件常驻或交替使用GPU)、分离式(组件流水线执行)、混合式(自定义组合放置形式)[15][17] 性能表现 - 在具身智能训练中相比分离式执行模式系统提速超120%[7][24][27] - OpenVLA模型在Maniskill3任务中成功率从SFT后的30%-50%提升至80%-90% 涨幅40%-50%[24][28] - OpenVLA-OFT在LIBERO测试平台平均成功率97.3% 相比SFT模型提升62.4%[24][26] - 1.5B数学推理模型在AIME24/AIME25/GPQA-diamond数据集分别达48.44%/35.63%/38.46% 平均40.84%[29][30] - 7B数学推理模型在相同数据集达68.33%/52.19%/48.18% 平均56.23% 均实现SOTA[29][31] 系统优化特性 - 集成两套后端:Megatron+SGLang/vLLM支持已收敛模型架构 FSDP+HuggingFace支持未收敛模型架构[21] - 自适应通信库包含四项优化:自适应CUDAIPC/NCCL通信、负载均衡传输队列、多通道并发通信、快速通信重配置[19][22][25] - 自动化调度模块支持秒级在线扩缩容 70B模型1秒完成5D并行动态扩缩[23] - 支持LoRA训练、断点续训、多可视化工具集成 正在集成SFT模块提供一站式服务[18] 应用范围 - 专门支持Vision-Language-Action Models(VLAs)+RL训练 集成OpenVLA、OpenVLA-OFT、Pi 0等主流具身大模型[24] - 支持百余类具身智能任务 涵盖CPU-based和GPU-based仿真器[24] - 率先实现Pi 0的大规模强化学习微调 相关算法将于9月底发布[24] - 框架设计具通用性 可快速支持其他非具身智能应用场景[29]
基于大型VLM的VLA模型如何改一步一步推动机器人操作任务的发展?
具身智能之心· 2025-08-26 00:03
文章核心观点 - 大型视觉语言模型VLM正推动机器人操作从预定义任务向开放世界自主执行转变 通过视觉语言动作VLA模型整合感知 语言理解和动作生成 使机器人能理解自然语言指令并在动态环境中执行复杂任务[3][4][16] - 哈尔滨工业大学深圳团队发布首篇系统综述 提出VLA模型的单体与分层二元分类体系 梳理技术发展 核心特征及数据集 并指出未来研究方向如记忆机制和3D4D感知升级[5][9][10][74] VLA模型架构分类 - 单体模型整合感知 语言理解和动作生成于单一或双系统架构 无显式中间表示 包括单系统模型统一输入并自回归解码输出动作 以及双系统模型分离高层推理与低层动作生成以平衡精度与实时性[19][20][30] - 分层模型显式分离规划与执行 通过人类可解释中间表示如子任务 关键点或程序连接规划器与策略器 分为仅规划器生成中间表示依赖现成策略器 以及规划器加策略器端到端优化规划与执行[19][21][41][48] 单体模型技术进展 - 经典自回归解码范式将连续动作离散化为token序列 VLM自回归生成后解令牌为可执行动作 如RT-2以PaLM-E/PaLI-X为骨干训练互联网与机器人数据 将动作视为语言任务提升语义理解与泛化性[23][24] - 模型性能增强通过扩展感知模态如3D点云 4D时空线索和触觉听觉 提升推理能力如引入思维链和分层闭环控制 以及优化泛化性如统一动作空间和可逆训练 代表技术包括Leo Agent处理点云和CoT-VLA预测子目标[25][26] - 推理效率优化从架构 参数和解码策略三方面降低开销 如RoboMamba采用Mamba架构达Transformer三倍速度 BitVLA用1-bit权重压缩模型 以及PD-VLA并行解码加速动作生成[28][29] 分层模型技术进展 - 仅规划器方法生成程序 关键点或子任务等中间表示 依赖现成策略器执行 如基于程序的Chain-of-Modality生成Python代码控制机器人 基于关键点的MoManipVLA预测路点优化轨迹 以及基于子任务的PaLM-E统一VQA与指令生成[42][43][45][47] - 规划器加策略器端到端优化规划与执行 基于关键点方法如HAMSTER预测轨迹关键点指导策略 基于子任务方法如HiRobot分解开放指令为原子命令后执行 代表技术还有DexVLA结合VLM规划器与扩散策略器处理长程任务[49][50][51][52] 其他先进技术领域 - 基于强化学习方法通过在线交互或离线轨迹优化VLA策略 解决奖励稀疏和样本效率问题 如VLA-RL训练过程奖励模型 ReWiND以目标进度为奖励 以及ConRFT结合离线与在线训练[54][55][63] - 无训练方法通过架构或计算优化提升效率 如FlashVLA稳定场景跳过解码 EfficientVLA剪枝冗余语言层和过滤视觉令牌 以及PD-VLA并行不动点迭代加速[56][57][58] - 从人类视频学习利用人类与机器人交互结构相似性迁移任务知识 如UniVLA从无标注视频学习任务中心潜在动作 LAPA用VQ-VAE量化动作预训练 以及3D-VLA融合视频提升3D推理[59][60] - 基于世界模型整合预测环境动态的紧凑表示 通过模拟未来状态优化动作规划 如WorldVLA联合预测视觉结果与生成动作 World4Omni生成子目标图像指导策略 以及V-JEPA 2-AC通过模拟潜在状态做规划[61][62] 核心特征与能力 - 多模态融合通过共享嵌入空间减少语义偏移 令牌级整合捕捉跨模态依赖 以及全面模态兼容性无缝整合点云 触觉和音频等新模态 代表技术包括PointVLA加入点云编码器和VTLA融合触觉输入[64] - 指令遵循依托语义理解与推理实现灵活响应 包括语义指令定位动态解读模糊指令 任务分解与协作拆分子目标 以及思维链推理预测未来视觉状态提升可靠性 如ChatVLA-2理解白板数学问题[65] - 多维度泛化实现跨任务 跨领域和跨载体适配 如DexVLA无需调优完成多样操作 π₀通过异构数据联合训练在家庭环境成功率超90% 以及HAMSTER在七个泛化维度成功率比OpenVLA高20%[65] 数据集与基准测试 - 真实世界数据集捕捉环境复杂性支持语言与动作对齐 如OXE整合22个机器人平台的100万+多模态演示 RH20T支持147项任务单样本学习 以及DROID含564项自然场景远程操作演示[66][67] - 模拟数据集提供可扩展安全训练环境 如BEHAVIOR支持杂乱家庭环境多步骤控制 CALVIN支持无约束语言指令长期操作 以及SIMPLER通过校准环境减少模拟到现实差距[67][68] - 人类行为数据集提供语义丰富交互先验 如Ego4D含3000小时第一视角视频 EPIC-Kitchens提供细粒度烹饪任务视频 以及EgoDex含829小时3D手部追踪视频[68][69] - 具身数据集聚焦规划与推理能力评估 如OpenEQA评估功能与常识推理 LoTa-Bench验证LLM生成规划可执行性 以及MT-EQA支持多目标推理[69][70] 未来研究方向 - 需优化数据集与基准测试 结合大规模真实数据采集与复杂任务套件 引入多维度评估指标解决现实差距与任务单一问题 并开发记忆机制与长期规划转向目标驱动连贯动作[74][75] - 技术升级包括3D与4D感知整合深度与时间动态信息 移动操作整合自适应策略 多智能体协作构建共享世界模型 开放世界终身学习设计增量知识积累 以及模型效率提升通过动态令牌修剪和量化[75]
3个月!完成你的具身大脑+小脑算法学习
具身智能之心· 2025-08-25 00:04
具身智能行业概述 - 具身智能强调智能体与物理环境的交互与适应 聚焦智能体在物理世界中感知环境、理解任务、执行动作并反馈学习的能力[1] - 具身智能的核心模块由大脑和小脑构成 大脑负责思考感知(语义理解和任务规划) 小脑负责执行(高精度运动执行)[1] 国内外产业布局 - 近2年具身明星团队陆续创业 成立星海图、银河通用、逐际动力等公司 推动具身本体和大小脑技术进步[3] - 华为2024年底启动"全球具身智能产业创新中心" 与乐聚机器人、大族机器人等企业合作建设具身智能大脑和小脑关键技术[5] - 京东自2025年5月以来连续投资智元机器人、千寻智能、逐际动力等公司 强化物流科技与家庭服务场景效率[5] - 腾讯、蚂蚁集团、小米等科技巨头通过战略投资与合作加快构建具身智能产业生态[5] - 国外Tesla/Figure AI推进工业与物流机器人应用 美国投资机构支持Wayve、Apptronik等公司落地自动驾驶与仓储机器人[5] - 国内企业以产业链投资与综合平台驱动具身智能落地 国外科技巨头侧重基础模型、模拟环境与类人机器人原型研发[5] 技术演进阶段 - 第一阶段聚焦抓取位姿检测 通过点云或图像预测末端执行器姿态实现静态物体抓取 但缺乏任务上下文和动作序列建模[6] - 第二阶段进入行为克隆阶段 借助专家演示数据学习从感知到控制的端到端映射 具备模仿人类完成复杂任务能力[6] - 第三阶段(2023年起)采用Diffusion Policy方法 通过扩散模型生成整个动作轨迹 提升策略稳定性与泛化能力[6] - 2024年进入Vision-Language-Action模型阶段 融合视觉感知、语言理解与动作生成模块 支持零样本或小样本快速泛化[6][7] - 第四阶段(2025年起)探索VLA模型与强化学习、世界模型、触觉感知等模块融合 提升长时任务试错能力与环境动态预测能力[8] 技术发展特征 - 从抓取位姿检测到行为克隆、扩散策略与VLA模型的演进 体现"低层感知->中层策略->高层理解"的能力补齐路径[9] - VLA+强化学习结合提升机器人试错能力与自我改进能力 VLA+世界模型引入环境动态预测 VLA+触觉信息拓展多模态融合感知边界[8] - 技术发展推动人形机器人、机械臂、四足机器人等产品落地 服务于工业、家居、餐饮、医疗康复等领域[9] 工程化需求 - 产业界推动具身智能从"论文"走向"部署" 对工程能力提出更高要求[12] - 需要在Mujoco/IsaacGym/Pybullet等平台完成策略训练与仿真测试[12] - 需要训练并部署Diffusion Policy/VLA/力触融合的VLA模型[12] - 需要实现强化学习在VLA后训练上的应用 支持机器人反馈微调[12] - 需要实现从世界建模预测→策略学习→物理执行的一体化具身智能架构[12]
从方法范式和应用场景上看强化与VLA/Flow Matching/机器人控制算法
具身智能之心· 2025-08-19 01:54
方法范式 - 传统强化学习(RL)和模仿学习结合Sim2Real技术,方法包括DQN/PPO/SAC/D4PG/GRPO等,主流仿真环境有Mujoco、Gazebo、Bullet、IssacSim/IssacGym [5] - Diffusion Policy和VLA模型与传统RL的根本区别在于用训练数据分布描述任务目标,而非依赖reward function,适合复杂任务如叠衣服、收拾桌面等 [4] - OpenVLA模型整合多模态输入,基于7B参数的Llama 2语言模型,结合DINOv2和SigLIP视觉编码器 [7] - RDT(Robotic Decision Transformer)采用Goal-Conditioned设计,在AGIBot百万真机数据集上训练 [9] - pi-0引入动作抽象层,将不同机器人关节空间映射到统一潜空间,缓解本体差异问题 [13] - 流匹配(Flow Matching)建模从标准正态分布到复杂目标数据分布的映射,用于生成机器人动作序列 [15][17][18] 技术实现 - 基础运动控制(如人形/四足机器人)以RL+sim2real为主,模型较小,算力消耗低,但全场景丝滑动作仍有差距 [22] - 复杂/长程操作任务采用预训练ViT编码器+LLM,使用diffusion/流匹配/transformer decoder输出动作,通过预训练+微调实现跨机器人泛化 [23] - 宇树官方demo基于IssacGym和PPO算法 [24] - 北京亦庄人形机器人中心开源强化学习运动控制,基于IssacLab融合人体运动数据与AMP奖励,实现天工Ultra机器人21公里奔跑 [24] - pi0预训练阶段利用10,000小时多机器人数据,微调阶段需1-5小时到上百小时任务数据,模型规格为33亿参数 [25] - Google Gemini Robotics采用云端VLA骨干(160毫秒延迟)和本地动作解码器的快慢架构 [25][26] 数据集 - Open X-Embodiment数据集包含1M+ trajectories、500+ skills、22种机器人类型,统一为RLDS格式 [21] - AGIBot数据集为智元机器人开源的百万真机数据集 [9][24] - EgoDex数据集包含829小时人类操作视频,338K轨迹/194任务 [24] 应用场景 - 基础运动控制依赖仿真器、机器人模型和domain randomization设计,reward shaping和sim2real技术 [35] - 复杂长程任务依赖VLA和Diffusion/FM,用训练数据分布描述任务目标,语言索引任务分布 [35] - 任务过程和目标定义方面,强化学习通过reward函数,VLA用数据分布描述,未来可能通过多模态输入预测任务目标 [35] - 底层控制任务适合RL+sim2real,上层复杂任务适合VLA+数据,如叠衣服、收拾桌面等需要理解人类意图的任务 [40]