软硬件一体开发

搜索文档
王晓刚:物理世界模型用于驾驶辅助训练很重要
新浪财经· 2025-04-24 09:04
上海车展与行业趋势 - 上海车展于4月23日开幕 主题为"拥抱创新 共赢未来" 涵盖传统燃油车、新能源车、智能驾驶和供应链技术等领域 高阶智驾、AI大模型和多模态感知等前沿技术加速落地 [1] 供应链成本控制策略 - 保证产品品质和安全性是第一位 通过扩大智驾市场合作量产车辆分摊智能驾驶系统成本 [3] - 行业逐渐形成硬件配置共识 车厂注重传感器型号平台化 减少对特定车型的重复开发和适配工作 [3][4] 技术突破方向 - 生成式智驾是未来重要趋势 利用世界模型重建物理场景 通过仿真环境复现问题场景并生成大量危险场景数据 解决端到端模型的数据局限性和不确定性问题 [5][6] - 多模态大模型改变智能座舱交互形态 具备深度思考能力 支持多轮多人对话和观点综合 打破传统一对一交互模式 [6][10] 数据有效性分析 - 99%的用户真实数据对训练模型没有帮助 因为90%的驾驶数据是匀速直线行驶 缺乏信息增量 只有踩刹车、避让或拐弯等场景的信号才有效 [7] - 复杂场景中80%的驾驶行为可能停止 仅少数高水平驾驶者能顺利通过 这些是高质量数据 类似GPT等大模型也需筛选互联网数据 删除90%以上低质量数据 [7] 模拟数据应用 - 模拟仿真解决驾驶行为生成问题 通过强化学习改进模型 但困难场景仍需寻找 类似DeepSeek面临难问题稀缺的挑战 [8] - 模拟数据需保持硬件系统时空一致性 例如11个摄像头生成的视频轨迹必须一致 避免训练问题 并可兼容设备故障 [8] 智能座舱产品进展 - 多模态识别功能已在某主机厂实现 更多新功能在上海车展展示 正在寻找量产机会 [9] - New Member产品支持多对多、多轮多人对话 能识别对话者身份并参与讨论 总结观点 实现根本性交互变革 [10] - 主动交互可应对长途驾驶犯困问题 如播放音乐或说话 但更需与驾驶结合确保安全 避免长时间聊天 [10][11] 行业变革节点 - 自动驾驶时代到来将根本改变座舱状态 解放人员自由度 [12] - New Member类聊天机器人可与手机等设备打通 实现无处不在的交互 [12] 软硬件开发生态 - 软硬一体可降低成本 但通用性更好的软件生态是关键 如英伟达GPU的强软件生态 [13] - 芯片厂商如英伟达、高通、MTK和英特尔均强调生态建设 软硬结合是趋势 但最优解仅在成本有优势 不影响纯软件开发公司 [13]