仿真合成数据
搜索文档
营收破亿,光轮智能完成数亿元 A 及 A+轮融资,揭秘机器人「数据荒」背后的生意经
Founder Park· 2025-11-25 12:38
公司融资与市场地位 - 光轮智能完成数亿元A轮及A+轮融资,投资方包括东方富海、三七互娱等机构,老股东辰韬资本持续加注 [2] - 融资资金将用于规模化交付能力建设、技术研发投入和高水平人才引入 [2] - 公司年营收突破亿元,订单需求持续指数型增长,客户覆盖英伟达、谷歌、Figure AI、比亚迪、吉利等国内外顶尖企业 [2] - 公司定位为全球Physical AI与世界模型数据市场的第一数据基础设施提供商 [23] Physical AI的行业机遇与数据瓶颈 - 英伟达CEO黄仁勋指出Physical AI已是数十亿美元业务,正应对数万亿美元机会,是公司下一个增长引擎 [3] - 机器人基础模型开发存在巨大的数据短缺问题,现实世界中缺乏足够多的机器人部署来收集数据 [7][9] - 世界模型的发展同样面临数据瓶颈,需要大量高质量多模态数据来理解物理世界的因果关系和物体交互 [9] - 英伟达机器人产品线经理Spencer Huang强调模拟(Simulation)是解决数据不足的关键答案,可将20年学习压缩到几小时 [12] 光轮智能的技术解决方案 - 公司通过仿真环境生成高质量合成数据,为机器人开发者提供一站式合成数据与仿真解决方案 [13] - 平台深度整合英伟达Isaac Sim、Omniverse Cloud及OpenUSD等技术栈,提供物理精确的SimReady资产库 [16] - 仿真细节精确建模,如冰箱门铰链阻尼、抽屉摩擦系数、桌布形变特性,确保技能可迁移至真实世界 [16] - 应用场景已覆盖医疗手术机器人、智能制造产线、自动化化学实验室、智慧农业采摘等多个垂直领域 [19] 与英伟达的深度生态合作 - 光轮智能创始人在融资后受邀登上英伟达官方YouTube频道,访谈内容被推送至其全球社交媒体平台 [6] - 过去一个月双方高频互动,包括与英伟达产品营销总监的直播及在GTC DC大会主旨演讲中被展示 [20] - 公司在技术层面为英伟达GR00T、Cosmos等模型提供合成数据支持,是Omniverse和Isaac Sim平台SimReady资产生态的核心贡献者 [20] - 双方共同开发Isaac Lab-Arena测试框架和Newton物理引擎应用,体现了紧密的生态协作关系 [20] 行业愿景与发展规划 - 仿真被视为机器人行业的加速器,有望加速规模达50万亿美元的产业发展 [21] - 公司下一步将重点建设规模化交付能力,以匹配高速增长的客户及市场需求 [23]
本体无关:Generalist 27万小时要掀真机采集场桌子
36氪· 2025-11-14 00:17
行业核心观点 - 数据竞赛的关键分水岭在于是否回归数据采集的“第一性原理”,即追求可复用、可扩展、可演进的规模化数据流,而非数据方案的路线之争 [1] - 传统执着于单一本体、高成本标注的真机遥操模式难以支撑Scaling Law所需的数据洪流,背离了智能泛化的基本逻辑 [1][24] - Generalist AI的突破重写了具身智能时代的数据法则:打破本体依赖,建立可复用、可扩展的数据飞轮是迎接Scaling Law时代的关键 [25] 具身智能领域的Scaling Law验证 - 2025年11月4日,Generalist AI发布GEN-0具身基础模型,在27万小时人类操作视频数据上完成训练,首次在机器人领域验证了Scaling Law的存在,被业内誉为具身智能的“ChatGPT时刻” [1] - 27万小时的数据量远超目前公开的所有本体机器人数据集,且数据量仍以每周1万小时的速度增长 [3] - Generalist采用了UMI(通用操作接口)方案,使数据采集设备与机器人本体解耦,可在全球数千个家庭、仓库、工作场所灵活部署,实现了真正的规模化数据采集 [12] 真机遥操数据的瓶颈 - 真机遥操数据采集本质是受限于物理世界的线性积累过程,其缓慢的积累速度无法满足Scaling Laws对数据规模的指数级需求 [3] - 典型模式是围绕特定机器人硬件建立线下数据工场,由操作员遥操作真实机器人进行任务演示,其增长严重依赖“堆人头”和实机运行,是线性的 [3] - 物理硬件的“锚定效应”使得数据采集体系刚性且笨重,无法实现灵活、快速的规模化扩展,数据积累速度被硬件能力和可用性锁死 [4] - 真机遥操数据虽质量高,但难以跨形态部署,当机器人本体迭代或需求变化时,此前数据资产难以复用,形成“卖本体”驱动的数据采集模式 [12] - 数据采集消耗大量人力物力,大部分采集员为兼职或外包,影响数据质量,且难以触碰Scaling Law [12] 具身机器人落地的核心需求 - 产业核心命题是倾听具身机器人的“真实需求”,其价值实现核心在于“用起来”的深层逻辑,即场景应用必须同时满足刚需性、长效性与规模经济性的三重诉求 [5] - 真正落地方向是成为人类劳动的“协同伙伴”,将人类从重复性、低价值、高危、高负荷作业中解脱,深度融入工厂生产、商业服务、特种作业等核心产业场景 [5] - 产业落地要求具身机器人跳出“动作复刻”的桎梏,深度理解物理世界的内在肌理与动态运行轨迹,不仅要“会做”,更要“懂做” [6] - 长效落地产业场景的核心难点集中于触觉反馈、力控精度、环境感知等精细化交互能力,而非宏观动作 [6] 精细化交互数据的挑战与价值 - 李飞飞指出,开发机器人的核心挑战是缺乏适用于各种具身形式的训练数据,机器人需要掌握更精细的物理交互数据 [8] - 足量且高质量的精细化数据是具身机器人精准执行任务的“养分”,这部分人类难以言说的数据成为制约其规模应用的重要痛点 [8] - 精细化能力缺失导致诸多“落地试错案例”,如拧瓶盖时压扁水瓶、搭积木时碰倒整排、工业装配中出现零件压损或错位等 [9] - 产业的真正拐点,必将始于在核心能力培育所需的数据供给上取得根本性突破 [9] 数据金字塔与仿真合成数据的潜力 - 行业公认的数据金字塔分为三层:底层是互联网海量公开数据及人类操作视频数据,中间层为仿真合成数据,塔尖是价值密度最高的真机遥操数据 [10] - 仿真合成数据展现出触碰Scaling Law的潜力,且在经济效率上更具优势,同一套仿真场景资产可以适配不同形态的机器人进行训练 [14] - 仿真数据可在虚拟环境中快速生成海量、多样化训练数据,在成本控制和部署灵活性上具有独特优势,能填补预训练数据集的巨大缺口 [16] - 仿真环境可精准模拟触觉反馈、力控阈值等真机实测中难以捕捉的精细化参数,同时通过调整场景变量生成具备场景泛化性的数据 [16] 仿真合成数据的商业实践与技术进展 - 银河通用坚持以仿真技术为核心研发路径,成功推出“银河太空舱”并全国大面积落地,证明了仿真路线在商业转化上的巨大潜力 [17] - 李飞飞强调不会低估高质量合成数据的力量,它们在训练过程的关键步骤中补充了互联网规模的数据 [18] - 光轮智能与NVIDIA合作开发电缆仿真解决方案,能够处理“可变形体+刚体”双重物理属性,为机器人操作线缆等复杂任务提供高保真数据 [20] - 光轮智能建立完整基准测试流程,确保仿真数据有效性,其目标不是“数字孪生”而是生成具有多样性和代表性的“数字同类体” [22] - 光轮通过标准化流程将现有数字资产快速转化为仿真就绪资产,如一个冰箱模型转化时间可缩短至约20分钟,支持单GPU并行运行成百上千个环境 [22] - 光轮智能已实现破亿营收,客户覆盖DeepMind、斯坦福、Figure、阿里、字节等顶尖企业与机构,验证了仿真合成数据的规模化市场价值 [23]
走进冠军企业银河通用:今年重点落地零售场景
新京报· 2025-08-31 08:58
公司技术与产品 - 公司核心产品为人形机器人Galbot G1,采用双臂可折叠轮式构形,高1.73米,臂长1.9米,双臂可触及2.4米高,市场售价约70万元 [5] - 机器人具备商业化应用能力,其背后依赖一套VLA(视觉-语言-动作)基座大模型,能够跨场景实现泛化部署,目前泛化抓取成功率超过95% [1][3] - 公司通过自研仿真数据合成管线,积累了亿级真实应用场景数据及百亿级的合成仿真数据,以解决行业数据短缺问题 [2][3] - 公司将机器人“教育”分为通识教育和职业教育两个阶段,通识教育使用百亿级别合成数据,职业教育使用少量真机摇操数据,结合后实现场景泛化部署 [3] 公司商业化进展 - 公司产品已在工业、零售、医药、迎宾等多场景实现商业化落地,合作方包括国际一线车企 [5][6] - 在商业零售场景,公司于北京海淀区落地十余家人形机器人智慧药房,并计划今年在全国实现100家落地;在中关村大融城设置银河太空舱,由机器人售卖商品 [6] - 公司计划未来在全国10个重要城市落地100家店,并上线文创雪糕等高商业价值产品,商业零售是今年重点发力方向 [6] - 在医药场景,公司与北京宣武医院合作成立联合实验室;在出海方面,于阿联酋阿布扎比的酒店实现迎宾导览应用 [6] 行业动态与公司定位 - 公司在2025世界人形机器人运动会中代表“北京队”获得15个冠军,其Galbot G1是“医院场景-药品分拣技能竞技”金牌得主 [1][7] - 行业共识是寻找场景和商业闭环,机器人技术已发展到向公众和行业证明自身综合能力及应用价值的阶段 [7] - 公司成为第二届国际人工智能奥林匹克学术活动的官方指定机器人平台和决赛场景赛命题方,有来自60余个国家和地区的300多名中学生参与 [7]