Workflow
莫拉维克悖论
icon
搜索文档
追光|机器人跑完马拉松,DeepSeek被记者采“破防”了(有彩蛋)
环球网资讯· 2025-04-20 01:57
全球首次人机共跑半程马拉松赛事 - 2025北京亦庄半程马拉松暨人形机器人半程马拉松于4月19日举行,这是全球首次人机同场竞技的半程马拉松赛事[1] - 赛事允许操作员通过遥控器控制机器人,也有队伍选择赋予机器人更多自主性,通过信号发射器引导机器人自主奔跑[8] - 比赛要求参赛机器人必须具有人形外观,能够实现双足行走或奔跑动作,禁止轮式结构[10][11] 人形机器人技术发展现状 - 天工队机器人采用"大小脑协同"决策系统,感知元件捕捉环境信息后由"大脑"决策,"小脑"控制执行动作[18] - 比赛中机器人表现差异明显,既有稳定发挥的天工机器人,也有频繁出现故障的"显眼包"机器人[18][20] - 机器人运动能力受限于莫拉维克悖论,对人类简单的运动协调对机器人而言需要依赖传感器融合和动态平衡算法等复杂技术[21] 具身智能技术应用前景 - 具身智能指AI拥有"身体"并能与环境交互,是当前技术发展的前沿方向[17] - 人形机器人可以更好地适应人类生活环境,成为高危生产、救援场景的人类助手[16][17] - 马拉松赛事为机器人技术提供了复杂户外环境的测试机会,收集的数据将支持企业技术升级[23] 人机交互的社会意义 - 赛事展现了人类对人形机器人的独特执着,反映了让机器人融入人类社会的愿景[14] - 观众对参赛机器人的鼓励反映了人类对技术进步的包容态度[25] - 赛事促进了人类对自身与机器共性的认知,展现了技术发展的人文价值[25]
黄仁勋「组局」,具身智能的核心玩家们聊了聊人形机器人的落地与未来
Founder Park· 2025-04-16 12:56
核心观点 - 英伟达发布通用机器人模型GR00T N1 重点布局Physical AI领域 并召集行业核心玩家探讨人形机器人技术路径与数据问题 [2] - 机器人领域加速发展得益于三大因素:模型突破(多模态/推理能力)、数据获取方式革新(仿真技术)、硬件成本下降(价格从150万美元降至4万美元) [8][9] - 具身智能未来将走向通用模型 但需要解决数据多样性问题 真实环境数据收集至关重要 [14][16][17] - 行业对"一脑多体"技术路径存在分歧 硬件与软件协同进化是关键挑战 [20][21] - 预计3-5年内机器人将实现社会普及 专用机器人将早于通用机器人落地 [24][25] 技术突破 - 模型层面:大型基础模型(如LLM)的出现使三维视觉理解和开放词汇能力大幅提升 端到端模型简化了控制架构 [9][14] - 数据层面:GPU加速仿真技术可在3小时内生成相当于10年训练数据量 突破数据瓶颈 [9][18] - 硬件层面:执行器/传感器等核心部件商品化 硬件价格从2001年150万美元降至当前4万美元水平 [9][13] 行业趋势 - 数据获取:必须通过真实环境部署获取多样化数据 家庭/工厂等场景将成关键数据源 [12][17] - 技术路径:从"基于编程的经验"转向"通过经验学习" 形成数据飞轮效应 [10][12] - 产品演进:专用机器人先行商用(如Agility的Digit) 逐步向多任务/通用型发展 [25][26] 关键挑战 - 跨实体泛化:需建立"实体宇宙"概念 通过多样化硬件平台积累数据 目前零样本泛化仍不现实 [20][21] - 安全机制:必须内置安全性设计 传统控制方法与AI新技术的"工具箱"需协同使用 [15][22] - 幻觉消除:物理交互能力是纠正认知偏差的核心 需构建闭环反馈系统 [22][23] 商业化展望 - 短期(1-2年):专用机器人在物流/制造等垂直领域实现商业价值 [25] - 中期(3-5年):机器人社会渗透率显著提升 进入消费级市场 [24] - 长期(10年):可能引发类似电力普及的社会变革 形成数字物理劳动力网络 [24][26]
美国机器人“四小龙”:通用机器人仍需十年,专用机器人即将出现,机器人的扩展法则会在五年内被探索出来 | GTC 2025
AI科技大本营· 2025-03-26 10:20
人形机器人行业现状 - 全球人形机器人领域已形成以美国公司为主导的竞争格局,主要参与者包括特斯拉、Google、NVIDIA等科技巨头以及Figure、Agility Robotics等新兴企业 [5] - 行业融资规模差异显著:Figure以26亿美元融资领跑,Physical Intelligence和Skild AI分别获得24亿和15亿美元,Agility Robotics和波士顿动力融资规模在10-12亿美元区间 [5] - 日本企业Telexistence和加拿大公司Sanctuary AI分别获得5.3亿和4亿美元融资,显示全球资本在该领域的广泛布局 [5] - 挪威公司1X Technologies和美国企业Mentee Robotics融资规模相对较小,分别为3.75亿和1.2亿美元 [5] 技术突破驱动力 - 模型层面突破:大型基础模型如ChatGPT的出现使系统具备推理能力,多模态模型显著提升对3D视觉世界的理解能力 [17] - 数据获取革新:GPU加速模拟技术可在3小时内生成相当于过去十年的训练数据,突破数据匮乏瓶颈 [17] - 硬件成本下降:人形机器人硬件价格从2001年150万美元降至当前4万美元水平,接近汽车价格区间 [17] - 模拟技术突破:物理环境模拟速度已超越真实世界时间流逝,大幅加速算法开发效率 [18] - 零部件商品化:消费电子产业推动电池、摄像头等技术发展,使机器人组件可模块化整合 [18] 技术范式转变 - 从控制理论主导转向经验学习:行业思维模式从"编程经验"转变为"通过经验学习",更贴近生物学习方式 [19] - 硬件稳健性提升:新一代机器人硬件可靠性显著增强,能够承受真实环境中的持续互动而不易损坏 [21] - 跨具身性研究:探索通用大脑控制不同硬件平台的可行性,英伟达GR00T项目致力于构建适配多型号机器人的统一模型 [22] - 数据策略创新:采用金字塔结构整合真实机器人数据、模拟数据和神经模拟数据,通过潜在动作提取算法提升训练效率 [22] 企业技术路径 - 英伟达GR00T项目采用端到端模型设计,追求"从光子到动作"的直接映射,模型参数仅20亿但性能出色 [21][22] - Skild AI专注于构建机器人通用大脑,主张通过单一共享模型解决数据稀缺问题 [8] - Agility Robotics强调真实场景部署,其Digit机器人已应用于制造业和物流领域 [10] - 波士顿动力保持技术延续性,在采用AI新技术同时保留传统控制理论工具 [18] - 1X Technologies探索远程操作界面抽象化,通过高级指令引导机器人自主完成精细操作 [27] 行业未来展望 - 硬件多样化趋势:当前人形机器人硬件同质化严重,未来将出现更多突破传统人体结构的设计创新 [30] - 专业型机器人先行:特定场景的"任务专家型"机器人将率先普及,解决劳动力短缺问题 [36] - 技术融合加速:机器人AI与数字AI界限逐渐模糊,真实世界互动数据将提升AI系统的验证能力 [33] - 社会接受度关键:机器人技术普及速度取决于社会接受程度和生产规模扩张能力 [36] - 长期颠覆性影响:十年内机器人技术可能像电力普及一样深刻改变社会生产和生活方式 [36]