openarm
搜索文档
都在说VLA,很多同学连demo都跑不好......
具身智能之心· 2025-12-03 10:00
文章核心观点 - 视觉语言动作模型领域面临从理论到实践的巨大挑战,特别是在真机数据采集、模型训练与部署等环节,存在显著的学习壁垒和落地困难 [2][6] - 行业技术发展迅速,开源框架和新算法不断涌现,但模型性能高度依赖硬件本体和数据质量,仿真与真实场景存在泛化差距 [2][4] - 为应对上述挑战,推出了一个全面的实战课程,旨在通过软硬结合的方式,系统化地培养VLA领域的实操人才 [14][16][19] 技术发展现状与挑战 - 算法层面近2年涌现大量新方法,如ACT、OpenVLA、π0、π0.5、π0.6系列,性能持续提升,基于强化学习的优化方案使模型运行更流畅 [4] - 开源硬件本体多样化,支持不同类型的研究需求,例如SO-100机械臂、openarm双臂操作系统、XLeRobot移动操作平台 [4] - 核心挑战在于数据、模型、训练、部署的全流程打通,初学者常陷入长期调试而难以入门,尤其π0、π0.5、GR00T等模型的数据采集和训练包含大量未公开技巧 [6] VLA模型落地关键模块 - **数据采集**:主要基于模仿学习(遥操作、VR、全身动捕捉)和强化学习,机械臂领域多采用前两种,如何保证数据质量及实现real2sim2real是关键问题 [7][8] - **模型训练**:真机部署前需进行仿真调试,Mujoco、Isaac Gym等框架在数据不足时尤为重要,训练技巧至关重要,不同算法难度差异大,ACT相对简单易出效果,而π0和π0.5则极难训练成功 [9][10] - **模型部署**:面临模型参数量大(即使2B规模)导致的边缘芯片部署挑战,必须进行轻量化操作如量化、蒸馏,以在保证性能的同时最小化参数量 [11][12] 课程解决方案与目标 - 课程定位为国内首个面向实战与求职的VLA小班课,内容覆盖机械臂硬件、数据采集、VLA算法、评测、仿真、主流模型部署、VLA+世界模型、真机实验及产业讲解 [14][16] - 课程目标为使学员掌握真机调试与数据采集、各类VLA算法真机部署、模型量化技术,并对产业落地有清晰认识,学完后达到1-2年算法工程师经验水平 [30] - 面向人群包括具身领域求职者、VLA入门进阶者、相关专业学生、以及希望从传统CV/机器人/自动驾驶转行的人员,建议具备Python和PyTorch基础,推理需3060及以上显卡,训练需2张以上3090ti显卡 [27]