OpenDriveVLA

搜索文档
后端到端时代:我们必须寻找新的道路吗?
自动驾驶之心· 2025-09-01 23:32
行业技术发展趋势 - 2025年VLA(Vision-Language-Action)成为行业新焦点,但技术路径出现明显分歧,部分企业积极推广而部分头部团队选择回避 [1][5][6] - 相较于2023-2024年端到端技术达成行业共识的局面,VLA技术路线呈现"分歧中的探索"态势 [5][6] - 技术切换期被视为占领用户心智和证明研发优势的关键窗口 [4] 企业战略布局差异 - 理想汽车通过VLA巩固端到端技术红利带来的领先优势 [4] - 元戎启行借助VLA提升辅助驾驶系统性能上限 [4] - 小鹏汽车将具身智能领域积累的VLA技术迁移至辅助驾驶系统,并采用自研高算力芯片解决实时性问题 [4][22] - 华为ADS明确主张WA(World Model + Action)为自动驾驶终极方案,回避VLA路径 [5] - 蔚来在低速场景应用世界模型但对外宣传保持低调 [5] - 地平线否认其HSD系统属于VLA,坚持VA(Vision-Action)技术路线 [23] VLA技术原理与应用 - VLA通过视觉模块感知环境、语言模块表述任务、动作模块执行驾驶行为,实现感知-决策一体化 [9] - 技术优势在于结合端到端的性能与语言的可解释性,理想状态下可映射人类驾驶本能 [10] - Wayve的LINGO系列实现边驾驶边用自然语言解释决策,LINGO-2支持实时语言指令调整行为 [12] - OpenDriveVLA融合2D/3D视觉token与语言生成控制轨迹,在Nuscenes数据集取得最优结果 [14][16] - 谷歌Deepmind的RT系列将互联网视觉-语言知识迁移至机器人控制,提升泛化能力 [17][18] 技术挑战与局限性 - 自然语言存在模糊性与不完备性,例如"慢一点"等指令缺乏精确动作约束 [19] - 语言-动作不对称性问题导致监督学习存在噪声,语言主要在任务级别有效而非细粒度控制 [19] - 多模态Transformer推理开销巨大,OpenVLA模型约7B参数需15GB显存且运行频率仅6Hz,低于行业10Hz标准 [21] - 实际部署中多用于上层任务分配,轨迹输出仍由传统模型执行并需兜底机制 [23] 替代技术路径发展 - VA(Vision-Action)方案通过内隐世界模型实现环境状态向量化表示,华为与地平线采用此路径 [23] - 地平线HSD系统通过深度神经网络实现决策统一性,在不同场景下保持自适应行为 [25] - 采用平衡数据分布并筛选优化人类驾驶数据,使决策更符合直觉 [25] - 坚持模块最小化架构,屏蔽激光雷达输入以避免感知依赖,保持系统简洁性与可维护性 [28] - 纯视觉版本结合软硬件一体方案具备成本优势 [31] 行业本质问题与未来方向 - 辅助驾驶核心问题仍是缺乏对世界的深度理解能力 [33] - 语言作为新输入维度类似激光雷达,提供抽象能力但非终极解决方案 [33] - 行业面临选择新道路或深化现有路径的战略抉择,不同技术路线均存在发展机会 [34]
自动驾驶VLA:OpenDriveVLA、AutoVLA
自动驾驶之心· 2025-08-18 01:32
OpenDriveVLA技术分析 - 核心目标是解决标准VLM在处理动态三维驾驶环境时的"模态鸿沟"问题,通过结构化方式让VLM理解3D世界[23] - 采用分层视觉Token提取方法,将BEV特征提炼为Agent Token、Map Token和Scene Token三种结构化视觉Token[25] - 多阶段训练范式包括特征对齐、指令微调、交互建模和轨迹规划微调四个阶段[25] - 在nuScenes开环规划基准测试上取得SOTA性能,平均L2误差0.33米,碰撞率0.10%[10] - 优势在于3D空间接地能力强,可解释性好,能有效抑制空间幻觉[26] AutoVLA技术分析 - 核心哲学是将驾驶任务完全融入VLM的原生工作方式,从"场景解说员"转变为"驾驶决策者"[26] - 创新性提出物理动作Token化,通过K-Disk聚类算法构建包含2048个离散动作基元的动作代码本[29] - 采用双模式思维与监督微调(SFT)结合组相对策略优化(GRPO)算法进行强化学习微调(RFT)[28][30] - 在nuPlan、Waymo和CARLA等多个基准测试上取得顶级性能[20] - 优势在于端到端整合度高,决策策略可通过RL持续优化,性能上限高[32] 技术对比 - OpenDriveVLA专注于感知-语言对齐,AutoVLA专注于语言-决策一体化[32] - OpenDriveVLA采用分层视觉Token提取,AutoVLA依赖模型自身注意力处理视觉信息[32] - OpenDriveVLA自回归生成文本形式坐标点,AutoVLA生成离散动作Token[32] - OpenDriveVLA采用多阶段监督学习,AutoVLA采用两阶段学习(SFT+RFT)[32] - 未来理想模型可能是两者的结合体,采用OpenDriveVLA的结构化感知前端和AutoVLA的动作Token化强化学习后端[34] 行业影响 - 两篇论文共同推动了VLA在自动驾驶领域的发展,描绘了更智能、更可靠的端到端自动驾驶系统前景[33] - OpenDriveVLA为建造摩天大楼打下坚实的地基,AutoVLA则是在坚实地基之上构建摩天大楼本身[36] - 相关技术涉及大模型、VLA、端到端自动驾驶、数据闭环、BEV感知等30+自动驾驶技术栈[38]
自动驾驶端到端VLA落地,算法如何设计?
自动驾驶之心· 2025-06-22 14:09
自动驾驶VLA模型研究进展 - 端到端自动驾驶已成为主流范式 视觉-语言-动作(VLA)方法伴随具身智能兴起 相关论文横扫前沿领域 [2] - 主机厂如理想 文远知行 小米 小鹏等都在大力尝试VLA技术量产落地 [2] - 学术界和工业界涌现AutoVLA ReCogDrive等优秀工作 关注自适应推理 强化微调等方向 [3][7][9] 关键技术突破 - AutoVLA统一推理和动作生成 采用双重思维模式(快速/慢速思维)和GRPO强化微调方法 [3][4] - ReCogDrive采用三阶段训练框架 集成VLM与扩散规划器 PDMS达89.6创SOTA [7][9] - DriveMoE引入混合专家架构 包含场景专用视觉MoE和技能专用动作MoE 处理罕见驾驶行为 [19][21][22] - OpenDriveVLA通过分层视觉语言对齐和代理-环境-自我交互过程 实现轨迹规划SOTA [28][30][32] 数据集与基准 - Impromptu VLA数据集含8万+视频片段 覆盖4类非结构化场景 显著提升模型性能 [14][18] - DriveAction基准含16185个QA对 直接关联驾驶操作 支持全面评估VLA模型 [23][24] - 行业亟需更多高质量VLA基准 当前工作多基于nuScenes Bench2Drive等有限数据 [47] 行业应用趋势 - VLA模型输出形式向多模轨迹生成发展 文本输出逐渐被替代 [47] - 大规模自动驾驶预训练模型仍欠缺 多数工作依赖Qwen等开源模型 [47] - 时序处理能力待加强 需适配车端实时性要求 [47] - 小米 博世 清华等机构积极布局VLA研发 形成产学研协同 [7][14][19][28] 性能对比 - AutoVLA在nuPlan等基准上PDMS达92.12 碰撞率低于1% [5] - ReCogDrive在NAVSIM基准PDMS达89.6 超越前SOTA 5.6分 [9][10] - DriveMoE在Bench2Drive紧急刹车等场景能力提升显著 均值达47.91% [22] - OpenDriveVLA-7B在nuScenes开环规划L2误差仅0.66m 优于GPT-3.5等基线 [31]