OpenAI API

搜索文档
Rust 天花板级大神公开发帖找工作:3000 次核心提交,不敌 “会调 OpenAI API、用 Cursor”?
AI前线· 2025-09-06 05:33
AI投资热潮对基础技术领域的影响 - AI热潮吸引大量资金和注意力 导致Rust等基础技术项目资源减少 [11][12][19] - Rust核心贡献者因团队预算削减被迫公开求职 反映基础技术领域人才面临就业困境 [9][13][15] Rust语言技术价值与市场现实 - Rust编译器包含超过70万行代码 核心贡献者Nicholas Nethercote提交3,375次commit且参与77个crate中75个的开发 [5][6] - Rust以内存安全为特性 在浏览器和操作系统领域积累声望但面临AI竞争压力 [19][20] - 编译器性能问题受到业界质疑 Unix联合创始人Brian Kernighan批评编译器运行缓慢且代码生成效率低 [23] 高端技术人才市场供需失衡 - 具备3,000+次代码提交经验的顶级编译器工程师难以匹配岗位需求 [15][19] - 招聘市场偏好AI相关技能(如OpenAI API调用)而非底层技术专长 [17][19] - 核心贡献者明确排除区块链/加密货币和生成式AI领域 坚持深耕Rust生态 [13] Rust语言发展面临的挑战 - 83岁技术领袖Brian Kernighan质疑Rust替代C语言的可能性 认为其学习曲线陡峭且开发效率低 [21][23] - 语言发展依赖编译器优化 但顶尖编译器人才正面临流失风险 [23] - 需要解决资源分配问题以在AI主导环境下保留关键人才 [23]
帮30家独角兽定价,这位最懂AI产品定价的人却说:95%AI初创公司的定价都错了
36氪· 2025-07-31 12:20
AI产品定价核心挑战 - AI产品从Day 1即具备强大增量价值但传统SaaS订阅模型无法体现真实价值 [2] - 价值捕获滞后导致无法收回实际业务价值(如节省人力、加速流程) [3] - 早期低价策略(如$20/月)会锚定错误用户心智并锁死未来增长空间 [3][12] AI定价四象限模型 - 基于归因能力(效果可量化程度)和自主能力(独立交付结果程度)划分四种定价模型 [4] - 低归因低自主:座位制收费(如Notion、Slack) [7] - 高归因低自主:混合计费(订阅+使用量)适用于AI协作助手 [8] - 低归因高自主:按使用量收费(如OpenAI API按token计费) [9] - 高归因高自主:结果导向定价(如Intercom Fin每解决工单收$0.99)为黄金象限 [10] - 黄金象限公司占比预计3年内从5%升至25% [10] 常见定价陷阱 - 定价过低导致高价值客户流失且后期涨价遇剧烈反弹 [12][13] - 免费POC浪费资源且无法转化应构建商业归因模型 [16] - 按人头定价忽略AI取代人力流程的本质需转向按结果付费 [17][18] - AI产品竞争对手是人类本身而非传统SaaS工具 [19] 有效定价策略 - 从第一天构建ROI模型量化人力节省/转化提升/机会价值等收益 [21][22] - 对POC收费筛选真实客户并避免被白嫖 [23][24][25] - 采用好/更好/最好阶梯定价(如$20K基础版至$100K企业版)引导价值关注 [27] - 将定价转化为价值叙事(如Superhuman以节省工时换算$30/月合理性) [30][31] - 混合模式为过渡终局应为结果型定价(按转化条数/任务结算/节省成本分成) [33] - 结果型定价可使AI公司收回25%-50%成果价值远高于SaaS的10%-20% [33] 长期定价权构建 - 需同时追求市场份额和钱包份额的双引擎策略 [35] - 产品需具备可归因性(量化业务价值)和自动化能力(独立完成任务闭环) [37][38] - 产品应从点状需求扩展至流程嵌入以渗透多部门场景 [41] - 黄金公式为可归因×自动化×可扩展=高定价权×大钱包份额 [42]
“烧掉94亿个OpenAI Token后,这些经验帮我们省了43%的成本!”
AI科技大本营· 2025-05-16 01:33
模型选择与成本优化 - 不同模型价格差异显著,GPT-4o-mini输入Token价格为每百万0.15美元,输出为0.60美元,而GPT-4.1输入输出价格分别为2美元和8美元[4][5] - 根据业务需求选择模型组合,简单任务使用低价模型GPT-4o-mini,复杂任务才切换至GPT-4.1,避免使用高价的GPT-4 Turbo[4] - 通过模型组合优化,整体成本降低43%[1] 提示词优化技术 - 利用OpenAI平台自动缓存机制,重复调用相同提示词可降低50%成本,长提示词延迟减少80%[6] - 提示词结构优化,将变化部分置于末尾以确保缓存命中率[6] - 减少输出Token数量,通过返回位置编号和类别替代完整文本,输出Token减少70%[7] 批处理与系统配置 - 非实时任务采用Batch API处理,费用节省50%,尽管存在24小时处理延迟[7] - 未设置账单预警导致5天内耗尽月度预算,凸显监控机制重要性[7] 行业实践争议 - 部分开发者质疑94亿Token消耗的必要性,认为优化策略应提前在系统设计阶段考虑[9] - 压缩输出Token可能影响模型推理质量,需权衡成本与效果,部分场景或适用传统逻辑替代[10] - 其他模型如Gemini因支持多模态和百万Token上下文被提议作为更廉价替代方案[9]