Workflow
自动驾驶轨迹规划模型
icon
搜索文档
博世最新一篇长达41页的自动驾驶轨迹规划综述
自动驾驶之心· 2025-12-05 00:03
文章核心观点 - 博世发布了一篇关于基础模型在自动驾驶轨迹规划中应用的重量级综述,系统梳理了37种近期方法,提出了统一分类法,并批判性评估了其设计、优势与局限,旨在为该快速发展的领域建立结构化基础并指明未来方向 [2][11] 背景回顾 - 基础模型是利用海量数据学习表征并可适配多种下游任务的大规模模型,如大型语言模型和视觉语言模型 [4] - 研究表明,未经自动驾驶专门训练的现成基础模型已能令人惊讶地良好理解复杂驾驶场景,这使其成为构建自动驾驶专用方案的潜力基础,也是当前行业范式转变的关键驱动力 [5] - 轨迹规划是驾驶过程最核心的任务,其他能力均为其提供辅助,因此综述重点聚焦于基础模型如何助力轨迹规划模型 [8] 分层分类体系 - 利用基础模型的轨迹规划方法可分为两大主类别:为轨迹规划定制的基础模型、指导轨迹规划的基础模型 [16] - **为轨迹规划定制的基础模型**:通过微调现有预训练基础模型,直接用于自动驾驶场景,共22种方法,可进一步分为仅专注于轨迹规划的模型和具备额外能力的模型 [19][20] - **指导轨迹规划的基础模型**:不构建专用模型,而是将现成基础模型的知识转移到现有自动驾驶模型中,共15种方法,可根据知识转移发生在训练阶段或推理阶段进一步划分 [20][21][22] 为轨迹规划定制的基础模型 - **微调核心要素**:包括数据整理、模型设计和训练策略 [23] - **数据整理**:取决于模型用例,仅用于轨迹规划的数据集核心是“观测-轨迹”数据对;若需语言或动作交互能力,则需补充相应的问答对或指令-轨迹对数据 [24][28] - **模型设计**:主流思路包括直接使用现成视觉语言模型,或组合视觉编码器与大型语言模型并通过视觉适配器连接 [27][29] - **轨迹表征**:常见方式包括将轨迹作为文本生成、作为离散化的动作token、或作为数值集合通过附加的规划头单次生成 [31] - **模型训练**:通常通过单阶段或多阶段完成,例如先训练视觉适配器,再微调全部或部分参数 [29] - **仅专注于轨迹规划的模型**:根据是否使用思维链及使用方式,可细分为无思维链、文本输出作为思维链、初始轨迹预测作为思维链三类 [25][32] - **具备额外能力的模型**:除轨迹规划外,还具备语言交互和/或动作交互能力 [38] - **语言交互能力**:需要视觉问答数据对进行训练,评估采用自然语言处理领域的经典指标 [38][39][40] - **动作交互能力**:可根据用户指令规划轨迹,目前方法均在CARLA模拟器的合成数据集上训练,需具备规避误导性指令的机制 [43] 指导轨迹规划的基础模型 - **仅在训练阶段进行知识蒸馏的模型**:推理阶段无需调用基础模型,能保持效率,方法包括将CLIP表征对齐到端到端模型中,或利用GPT-4o输出元动作进行蒸馏等 [48][49][51] - **在推理阶段进行知识转移的模型**:训练和推理阶段都调用基础模型,计算成本更高,根据转移知识类型可分为转移场景描述、转移规划决策、或同时转移两者 [48][53] - **知识转移类型**:包括场景描述、元动作、轨迹等,通过不同编码方式融入到自动驾驶模型的各个层级 [53][54][55] 现有方法的数据集与代码开放性 - 开放性是推动研究进展和实际部署的关键,但无任何一种方法的所有资产均支持研究与商业双用途 [57][59] - 仅有5种方法公开了所有资产,但部分仍限制商业使用,其中4种属于“为轨迹规划定制的基础模型”,1种属于“指导模块化自动驾驶模型轨迹规划的基础模型” [59] - “指导端到端自动驾驶模型轨迹规划的基础模型”类别尚无开源实现,训练代码与模型权重是限制最严格的资产 [59] 开放问题与挑战 - **高推理成本导致部署困难**:基础模型参数庞大且自回归生成,导致推理延迟高,难以满足实际部署所需的10-30帧/秒帧率要求,例如Orion模型在A800 GPU上推理帧率仅为0.8帧/秒 [63] - **微调后的能力下降**:微调可能导致视觉语言模型丧失对轨迹规划潜在有用的能力,出现“概念遗忘”现象 [64][66] - **动作交互能力局限**:现有模型仅能处理短时域内可执行的指令,无法拆解和执行人类化的复杂多步指令 [68] - **仿真到现实的差距**:所有具备动作交互能力的模型均在合成场景中训练测试,存在域转移问题,阻碍实际部署 [69] - **性能影响因素不明**:不同方法在架构、数据、训练上差异巨大,难以厘清导致性能差异的核心因素 [70] - **缺乏推理能力评估基准**:需要建立标准基准来评估模型在复杂语言-视觉场景下的推理能力 [71]
基于深度强化学习的轨迹规划
自动驾驶之心· 2025-08-28 23:32
强化学习技术范式演进 - 业界从端到端自动驾驶转向VLA和强化学习等新技术范式 [4] - 强化学习在2018年AlphaZero和2023年ChatGPT RLHF推动下获得更广泛应用潜力 [4] - 2025年初DeepSeek-R1在线推理进一步拓展强化学习使用场景 [4] 学习范式对比 - 监督式学习通过海量数据拟合输入到输出的映射函数 优化目标为平均均方误差值 [5] - 模仿学习以专家动作为监督信号进行行为克隆 在自动驾驶中扩展为短时序轨迹学习 [6] - 强化学习通过环境交互和任务结果反馈优化模型 采用延迟满足的时序决策机制 [7] - 逆强化学习通过用户反馈学习reward-model 解决奖励函数难以定义的问题 [8] 基础理论框架 - 马尔可夫决策过程将时序任务分解为状态概率转移任务 适用于自动驾驶目标生命周期管理 [10] - 动态规划通过分解最优子问题解决离散空间时序任务 [12] - 蒙特卡洛方法利用大数原理统计系统宏观特性 [13] 核心概念体系 - 策略分为确定性和随机性两种 自动驾驶通常采用确定性策略 [14] - 奖励函数提供环境反馈 价值回报定义为衰减因子加权和的时序期望值 [15] - 状态价值函数表示状态期望回报 动作价值函数评估状态动作组合的期望回报 [16][17] - 优势函数衡量动作价值与状态价值的差异 [19] - 贝尔曼方程通过动态规划分解价值函数 [20] 算法分类体系 - 值优化方法直接最大化Q或V函数 包括动态规划/蒙特卡洛/时序差分算法 [25][26] - 策略优化分为on-policy和off-policy两种 后者训练稳定性更好但存在分布偏差 [27][28] - 动态规划采用策略迭代和价值迭代算法求解离散任务 [30] - 蒙特卡洛方法通过统计平均估计价值函数 [32] - 时序差分算法引入常数alpha简化更新过程 衍生出SARSA和Q-learning等算法 [34][39] 深度强化学习算法 - DQN算法通过经验回放和目标网络解决连续状态表达问题 [41] - Dueling DQN将价值网络分解为Q和A的和并增加正则项 [42] - GAE算法结合蒙特卡洛和时序差分进行优势估计 [42] - 策略梯度算法使用梯度下降方式更新策略参数 [46] - Actor-Critic算法同时学习策略和价值函数 [49] - TRPO算法通过置信区间约束保证训练稳定性 [53] - PPO算法简化TRPO约束条件为clip函数 [55] - GRPO算法采用在线group样本统计平均替换value-model [57] 自动驾驶应用实践 - 预训练通过模仿学习任务初始化策略和价值网络 [58] - 策略梯度采用概率建模方法处理action输出 [59] - reward设计涵盖安全性/安心感/效率等指标 高级功能通过逆强化学习实现 [60] - 闭环训练需要多智能体博弈建模环境动态响应 [60] - 端到端强化学习需实时生成更新后的sensor内容 [61]