Workflow
全栈仿真平台
icon
搜索文档
全自研仿真GPU求解器x虚实对标物理测量工厂,打造具身合成数据SuperApp,加速具身仿真生态丨光轮智能@MEET2026
量子位· 2025-12-22 08:01
编辑部 整理自 MEET2026 量子位 | 公众号 QbitAI 从大模型智能的"语言世界"迈向具身智能的"物理世界",仿真正在成为连接落地的底层基础设施。 在本次量子位MEET2026智能未来大会上,光轮智能联合创始人兼总裁 杨海波 给出了他的观察: 具身智能的规模远大于文本与视觉模型,因为数据维度更真实、更复杂。 这也就意味着,具身智能时代的核心,不是算法本身,而是它所依赖的数据是否有效、可扩展——仿真是唯一能够解决数据问题的方案。 在仿真策略的路上,会遇到仿真不真实、Sim2Real不可靠等行业痛点, 光轮智能正在通过自研的一整套"测量、生成、求解"仿真基础设施来 解决这些问题 ,为具身智能提供数据、训练、评测的全流程解决方案。 △ 杨海波指出光轮智能深耕合成数据领域 另外杨海波还进一步指出, 仿真不是孤立的技术工具,需要以真实产业需求为锚点,通过应用场景构建生态。 其中, 具身仿真资产制作是生态的源头活水 ,依托自动化物理测量与生成技术,产出高物理真实的规范化数据资产,为具身训练提供核心燃 料; 大规模RL训练则通过并行的虚拟场景让智能体高效试错学习,将数据价值转化为具身实际技能 ,同时反向打磨仿真 ...