Autonomous Driving
搜索文档
VisionTrap: VLM+LLM教会模型利用视觉特征更好实现轨迹预测
自动驾驶之心· 2025-08-20 23:33
文章核心观点 - 提出VisionTrap方法 通过引入环视摄像头视觉输入和文本描述监督 显著提升轨迹预测精度 同时保持53毫秒低延迟实现实时处理 [3][4][5] - 创建nuScenes文本数据集 利用VLM和LLM生成精细化文本标注 为每个场景中的每个智能体提供丰富的行为描述 [6][37][40] - 视觉语义编码器与文本驱动引导模块结合 使模型能捕捉人类凝视、手势、转向信号等关键视觉线索 较基线模型提升预测精度20%以上 [5][17][46] 技术方法创新 - 视觉语义编码器采用BEV特征与可变形注意力机制 将环境信息注入智能体特征 计算效率较全局注意力提升显著 [14][16] - 文本驱动模块通过多模态对比学习 使同一智能体的视觉与文本特征在嵌入空间中对齐 正负样本相似度阈值设为0.8 [19][21][24] - 轨迹解码器引入变换模块学习旋转不变性 输出采用高斯混合模型建模 损失函数包含轨迹负对数似然与InfoNCE对比损失 [26][32][36] 实验验证结果 - 在nuScenes数据集上测试 完整模型达到ADE10指标0.368 较仅使用地图编码器的基线模型提升9.6% [46][47] - 视觉输入使预测误差降低27.56% 文本引导模块进一步将误报率(MR10)从0.36降至0.32 [46] - UMAP可视化显示引入文本语义后 相似行为智能体的特征嵌入呈现明显聚类效应 [48][49] 数据集构建 - 微调VLM生成初始标注后经GPT细化 消除冗余信息并增强动作描述准确性 流程涉及边界框拼接与提示词优化 [37][42] - 数据集包含动态文本描述 能随智能体行为变化实时更新 如"行人停止交谈并开始过马路"等场景化表述 [40][51] - 相较DRAMA数据集单智能体单标题的局限性 新数据集提供多智能体多维度描述 更适配预测任务需求 [37]
VLM还是VLA?从现有工作看自动驾驶多模态大模型的发展趋势~
自动驾驶之心· 2025-08-20 23:33
基于LLM的自动驾驶决策方法 - 利用大语言模型的推理能力描述自动驾驶场景,处于自动驾驶与大模型结合的早期阶段 [4] - Distilling Multi-modal Large Language Models for Autonomous Driving 论文发表于arXiv [4] - LearningFlow 提出自动化策略学习工作流用于城市驾驶场景 [4] - CoT-Drive 使用思维链提示技术实现高效运动预测 [4] - PADriver 探索个性化自动驾驶解决方案 [4] - LanguageMPC 将大语言模型作为自动驾驶决策者 [6] - Driving with LLMs 融合对象级矢量模态实现可解释自动驾驶 [5] - A Language Agent for Autonomous Driving 项目主页位于USC-GVL实验室 [7] 基于VLM的自动驾驶决策方法 - 视觉语言模型成为当前主流范式,视觉是自动驾驶最依赖的传感器类型 [8] - Drive-R1 通过强化学习桥接VLM中的推理与规划能力 [8] - FutureSightDrive 使用时空调维思维链实现轨迹规划可视化 [8] - Generative Planning 利用3D视觉语言预训练进行端到端自动驾驶 [9] - ORION 通过视觉语言指令生成实现整体端到端自动驾驶框架 [12] - DriveVLM 实现自动驾驶与大视觉语言模型的融合 [12] - DriveGPT4 通过大语言模型实现可解释的端到端自动驾驶 [12] - LightEMMA 是轻量级端到端多模态自动驾驶模型 [12] 基于VLA的自动驾驶决策方法 - AutoVLA 结合自适应推理和强化微调的视觉-语言-动作模型 [17] - DiffVLA 使用视觉语言引导扩散规划进行自动驾驶 [18] - Impromptu VLA 提供开放权重和开放数据的驾驶视觉-语言-动作模型 [20] - DriveMoE 为端到端自动驾驶设计专家混合模型 [21] - OpenDriveVLA 致力于基于大视觉语言动作模型的端到端自动驾驶 [21] - AlphaDrive 通过强化学习和推理释放VLM在自动驾驶中的潜力 [17] - X-Driver 使用视觉语言模型实现可解释自动驾驶 [17] 研究机构与会议分布 - 多数研究以arXiv预印本形式发布,部分发表于ICLR 2024、ECCV 2024、NeurIPS 2024等顶级会议 [7][13][15] - 项目代码多开源在GitHub平台,包括PJLab-ADG、wayveai、USC-GVL等实验室仓库 [7][13][18] - 研究机构包括密歇根交通实验室、清华大学Mars实验室、上海交通大学ThinkLab等知名院校 [12][15][21]
红色沃土新答卷丨晋察冀抗日根据地·山西阳泉:数字赋能 “煤城”转型“数智新城”
央视网· 2025-08-20 03:49
阳泉市数智化转型 - 阳泉市从传统煤城转型为创新高地,实现数智化蝶变 [1] - 建成12座智能化矿井,煤炭先进产能占比达95.84% [3] - 5G智能化矿井实现井下人员减少50%,效率提升50% [3] 自动驾驶与智慧交通 - 阳泉成为全国首个全域开放自动驾驶的地级市 [5] - 建成"车城网"系统,实现车路协同 [5] - 大连街路口改造后车均延误率降低45%,停车次数减少70% [5] 数字经济发展 - 实施数字经济优先发展战略 [7] - 建成中电数字经济产业园、"晋创谷·阳泉"等平台 [7] - 2024年数字经济核心产业营收增长13.3% [7] - 获评"2023-2024年度中国新型智慧百强城市" [7]
自动驾驶一周论文精选!端到端、VLA、感知、决策等~
自动驾驶之心· 2025-08-20 03:28
自动驾驶技术研究进展 核心观点 - 近期自动驾驶领域涌现大量创新研究成果 涉及端到端驾驶 感知 VLM Benchmark等多个方向 [2] - 自动驾驶之心知识星球已构建产业 学术 求职 问答的闭环生态 提供40+技术路线梳理和数十位行业专家资源 [4] 端到端自动驾驶 - 中科大GMF-Drive提出门控Mamba融合与空间感知BEV表征的端到端方案 [8] - 清华与比亚迪合作开发ME³-BEV框架 结合Mamba架构增强BEV感知的深度强化学习 [8] - 博世联合清华等提出IRL-VLA方案 通过免仿真器强化学习训练VLA驾驶模型 获CVPR亚军 [8] 感知与VLM技术 - VISTA模型实现基于视觉语言模型的驾驶员注意力时空预测及自然语言解释 [7] - 清华团队开发VLM-3D框架 实现开放世界端到端视觉语言模型驱动的3D感知 [10] - 慕尼黑工业大学Dream-to-Recon方案利用扩散-深度蒸馏实现单目图像三维重建 [10] 决策规控领域 - 安全关键型自动驾驶BEV感知技术获系统性综述 [10] - 清华CBDES MoE架构首创模块级动态路由 实现功能解耦专家混合 [10] - 加拿大温莎大学RMT-PPAD模型通过Transformer实现实时多任务全景感知 [10] 仿真测试与数据集 - 北大ReconDreamer-RL框架结合扩散场景重建增强强化学习 [11] - STRIDE-QA数据集提供城市驾驶场景时空推理的大规模视觉问答资源 [12]
都在做端到端了,轨迹预测还有出路么?
自动驾驶之心· 2025-08-19 03:35
端到端自动驾驶与轨迹预测技术 - 端到端自动驾驶量产应用仍较少 多数公司沿用二段式端到端或模块化方法 轨迹预测仍是量产主流算法 [1] - 轨迹预测模型与感知模型融合训练即构成端到端系统 该领域研究热度持续 会议期刊相关论文产出量大 [1] - 多智能体轨迹预测需处理历史轨迹数据 预测未来运动 应用于自动驾驶/智能监控/机器人导航 面临行为不确定性和多模态挑战 [1] 扩散模型在轨迹预测中的应用突破 - 扩散模型通过逐步去噪生成复杂分布 在轨迹预测中显著提升多模态建模能力 [2] - LeapfrogDiffusionModel采用可训练跳跃初始化器 减少去噪步骤实现实时预测 在NBA/NFL/SDD/ETHUCY数据集上精度提升19-30倍 [2] - MixedGaussianFlow构建混合高斯先验 在UCY/ETH/SDD数据集达到最先进性能 [2] - PatternMemory-basedDiffusionModel通过聚类运动模式构建记忆库 引导生成多样化合理轨迹 [2] 课程体系与科研目标 - 课程聚焦扩散模型多智能体轨迹预测 包含12周科研+2周论文指导+10周维护期 预期产出算法框架/定量分析/高水平论文 [3][9] - 覆盖轨迹预测技术发展史 比较传统模型与生成式模型创新点 包含LSTM/SocialPooling/Graph-basedmodel等经典方法解析 [24] - 重点解析LED/MGF/SingularTrajectory/MPMNet等先进算法 涉及跳跃初始化/混合高斯先验/运动模式记忆等核心技术 [24] 技术资源支持 - 提供ETH/UCY/SDD等公开行人车辆轨迹数据集及预处理脚本 [20] - 开源LED/SingularTrajectory/MGF/MPMNet等基线代码框架供参考扩展 [21][22] - 必读论文包括CVPR2023跳跃扩散模型/NeurIPS2024混合高斯流等前沿成果 [23] 课程特色与学员收益 - "2+1"师资配置(教授+研究员+行业导师) 配备科研班主任全程督学 [16][17] - 学习周期包含学前测试/个性化指导/学术复习 提供论文初稿/结业证书/推荐信等产出 [18][19] - 学员可掌握扩散模型条件控制/社会交互建模/多模态不确定性处理等高级技术 [24]
自动驾驶秋招交流群成立了!
自动驾驶之心· 2025-08-18 23:32
技术发展趋势 - 自动驾驶技术栈呈现趋同态势 从过去几十个方向算法需求转向统一方案如one model、VLM和VLA [1] - 技术方案统一化实际形成更高行业技术壁垒 [1] 行业社群建设 - 建立综合型平台汇集全行业人才 通过社群方式促进产业人才共同成长 [1] - 社群内容覆盖相关产业讨论、公司分析、产品研发及求职跳槽等专业领域 [1] - 提供行业社交网络构建渠道 帮助成员获取产业第一手信息 [1]
性能暴涨4%!CBDES MoE:MoE焕发BEV第二春,性能直接SOTA(清华&帝国理工)
自动驾驶之心· 2025-08-18 23:32
核心观点 - 提出CBDES MoE框架 在功能模块层面实现分层解耦的专家混合结构 集成四种异构视觉backbone 通过自注意力路由器实现动态专家选择 提升自动驾驶BEV感知性能[2][5][12] - 在nuScenes 3D目标检测任务中 mAP提升1.6个百分点至65.6% NDS提升4.1个百分点至69.8% 超越所有单专家基线模型[3][37] - 采用稀疏激活推理机制 仅激活top-1专家 显著降低计算成本 支持实时应用[25][26] 技术架构 - 集成四种结构异构专家网络:Swin Transformer(擅长全局空间结构) ResNet(强于局部结构编码) ConvNeXt(平衡局部性与可扩展性) PVT(多尺度目标建模)[17][18] - 设计自注意力路由器SAR 包含分层特征提取 自注意力编码和MLP专家评分三阶段 生成图像级路由概率[19][20][21] - 采用软加权特征融合机制 根据路由概率动态加权专家输出 保持训练稳定性[24] - 引入负载均衡正则化 防止专家坍塌 使mAP从63.4%提升至65.6% NDS从65.8%提升至69.8%[42][43][46] 性能表现 - 在nuScenes数据集上全面超越单专家基线:BEVFusion-Swin Transformer(mAP 64.0% NDS 65.6%) BEVFusion-ResNet(mAP 63.3% NDS 65.2%) BEVFusion-ConvNeXt(mAP 61.6% NDS 65.2%) BEVFusion-PVT(mAP 62.4% NDS 65.7%)[37] - 在恶劣条件(雨雾 夜间)下保持检测鲁棒性 显著减少误检和漏检[40] - 训练过程收敛更快 损失更低 显示优化稳定性和学习效率优势[39] 应用前景 - 可无缝集成至BEVFusion等标准框架 保持相机到BEV投影逻辑和下游任务头兼容性[29][30] - 当前支持图像级路由 未来可扩展至图像块级或区域感知路由 实现更细粒度适应[48] - 潜在扩展方向包括多任务学习(分割 跟踪) 跨模态路由(激光雷达信号) 以及自动化架构搜索[48]
Pony.ai Attracts Premium Capital as Funds Chase the Next Tech Transformation
Prnewswire· 2025-08-18 13:53
投资动态 - ARK Invest首次投资中国L4级自动驾驶公司Pony.ai 金额达1290万美元 [1] - 第二季度至少有14家全球知名机构投资者入股Pony.ai 包括Baillie Gifford和Nikko Asset Management等 [2] - 高盛给予Pony.ai买入评级 目标价24.5美元 较8月15日收盘价有54.5%上涨空间 [8] 市场前景 - ARK预测到2030年网约车市场规模将达10万亿美元 全球robotaxi车队规模可能达到5000万辆 [3] - 瑞银预计到2030年代末 中国robotaxi市场规模将达1830亿美元 除美国外的国际市场达3940亿美元 [9] - Pony.ai成为唯一在中国四大一线城市(北京上海广州深圳)获得全无人驾驶商业许可的公司 [6] 财务表现 - 第二季度robotaxi收入同比增长158% [4] - 第七代车型成本比前代降低70% 保险成本下降18% 远程辅助与车辆比例有望年底达到1:30 [5] - 公司预计年底车队规模达到1000辆时 将实现单位经济性盈利 [5] 运营进展 - 第七代车型自4月底发布后两个月内已生产约200辆 总车队规模达500辆 [5] - 在广州和深圳实现24/7全天候运营 [7] - 与腾讯合作将robotaxi服务接入微信平台 触达超10亿用户 [7] 技术优势 - 获得上海浦东部分区域收费服务商业许可 [6] - 安全性和技术验证获得认可 [8] - 被认为是robotaxi商业化准备最充分的企业 [9]
文远知行获Grab数千万美元投资,加速在东南亚大规模部署Robotaxi
搜狐财经· 2025-08-18 01:40
战略投资与合作 - 自动驾驶科技公司文远知行获得东南亚超级应用平台Grab数千万美元股权投资 [1] - 投资是双方战略合作的一部分 旨在加速东南亚L4级Robotaxi及其他自动驾驶车辆的大规模部署 [3] - 投资预计不晚于2026年上半年完成交割 具体时间取决于文远知行选定的时间点和成交条件 [3] 市场拓展与商业计划 - 文远知行计划结合东南亚当地法规和社会接受程度 渐进式部署数千辆Robotaxi [3] - Grab的投资将支持文远知行的国际增长战略 扩大东南亚商业自动驾驶车队规模 [3] - 公司将利用自动驾驶技术和运营经验与Grab的平台优势 提供安全高效的Robotaxi服务 [3] 合作伙伴优势 - Grab是东南亚家喻户晓的品牌 在网约车和数字服务领域拥有无可比拟的区域经验和规模优势 [3] - 合作将推动AI驱动的出行方式发展 巩固公司在未来出行领域的先发优势 [3]
自动驾驶VLA:OpenDriveVLA、AutoVLA
自动驾驶之心· 2025-08-18 01:32
OpenDriveVLA技术分析 - 核心目标是解决标准VLM在处理动态三维驾驶环境时的"模态鸿沟"问题,通过结构化方式让VLM理解3D世界[23] - 采用分层视觉Token提取方法,将BEV特征提炼为Agent Token、Map Token和Scene Token三种结构化视觉Token[25] - 多阶段训练范式包括特征对齐、指令微调、交互建模和轨迹规划微调四个阶段[25] - 在nuScenes开环规划基准测试上取得SOTA性能,平均L2误差0.33米,碰撞率0.10%[10] - 优势在于3D空间接地能力强,可解释性好,能有效抑制空间幻觉[26] AutoVLA技术分析 - 核心哲学是将驾驶任务完全融入VLM的原生工作方式,从"场景解说员"转变为"驾驶决策者"[26] - 创新性提出物理动作Token化,通过K-Disk聚类算法构建包含2048个离散动作基元的动作代码本[29] - 采用双模式思维与监督微调(SFT)结合组相对策略优化(GRPO)算法进行强化学习微调(RFT)[28][30] - 在nuPlan、Waymo和CARLA等多个基准测试上取得顶级性能[20] - 优势在于端到端整合度高,决策策略可通过RL持续优化,性能上限高[32] 技术对比 - OpenDriveVLA专注于感知-语言对齐,AutoVLA专注于语言-决策一体化[32] - OpenDriveVLA采用分层视觉Token提取,AutoVLA依赖模型自身注意力处理视觉信息[32] - OpenDriveVLA自回归生成文本形式坐标点,AutoVLA生成离散动作Token[32] - OpenDriveVLA采用多阶段监督学习,AutoVLA采用两阶段学习(SFT+RFT)[32] - 未来理想模型可能是两者的结合体,采用OpenDriveVLA的结构化感知前端和AutoVLA的动作Token化强化学习后端[34] 行业影响 - 两篇论文共同推动了VLA在自动驾驶领域的发展,描绘了更智能、更可靠的端到端自动驾驶系统前景[33] - OpenDriveVLA为建造摩天大楼打下坚实的地基,AutoVLA则是在坚实地基之上构建摩天大楼本身[36] - 相关技术涉及大模型、VLA、端到端自动驾驶、数据闭环、BEV感知等30+自动驾驶技术栈[38]