Workflow
VTLA大模型
icon
搜索文档
我们距离真正的具身智能大模型还有多远?
2025-08-13 14:56
行业与公司 - 行业涉及**人形机器人产业链**,重点关注**大模型端**和**硬件端**的发展[1] - 公司提及**特斯拉**作为硬件定型的核心推动者[3][4],以及国内企业如**银河通用**、**心动剂元**、**青铜视觉**、**凌云光**、**天奇**等[22][23][24] --- 核心观点与论据 **1 大模型是行业发展的关键卡点** - 当前行业瓶颈在于**模型端**,尤其是多模态大模型的智能水平,而非硬件控制成熟度[1][2] - 大模型为人形机器人提供“智能大脑”,是推动本轮发展的底层逻辑[2] **2 大模型发展的三条主线** - **多模态输入**:从C-CAN(仅语音)到RT1(动作+视频)、RT2(动作整合),再到Helix(200Hz频率)[5][6][11] - **频率提升**:RT2(1-5Hz)→ 派林(50Hz)→ Helix(200Hz,超过人类反应速度)[6][10][11] - **泛化能力**:通过增强推理能力(如PALM-E引入大模型分析)实现任务迁移[6][9] **3 数据飞轮与硬件定型的关系** - **数据不足**是模型停滞的主因,需真机数据形成闭环,但当前硬件未定型导致数据采集风险高[3][15] - **特斯拉的核心作用**:硬件定型后,行业才能规模化采集真机数据,推动模型迭代[3][4][16] **4 模型架构演进** - 从**分层模型**(大脑与小脑分开训练)到**端到端模型**(联合训练,效果更优但难度大)[7][8] - **快慢脑架构**(如Helix):快脑(80兆Transformer)+慢脑(7B BLM),数据回传实现200Hz高频动作[11][12] **5 数据采集的现状与挑战** - **数据类型**:低质量互联网数据(预训练)、仿真数据(成本低但真实性不足)、真机数据(质量高但效率低)[13][14][15] - **动捕设备**: - **光学动捕**(亚毫米精度,成本高,如青铜视觉、凌云光)[19][23] - **惯性动捕**(IMU,灵活低成本,如诺伊腾,特斯拉采购Xs为观察指标)[18][19] - 当前真机数据采集效率极低(每小时3-4条,单条成本超10元)[16] --- 其他重要内容 **1 未来大模型方向** - 融入更多模态(语言、视觉、传感器等)[20] - **世界模型**:用数学符号模拟物理规律,实现仿真数据≈真机数据(英伟达Cosmos目前效果不佳)[21] **2 国内企业布局** - **银河通用**:全仿真数据路线,发布Grasp VLA模型(无序抓取高成功率)[22] - **心动剂元**:ERA大模型采用双系统架构(快慢脑),早于Figure提出[22] - **天奇**:工业数据采集代工+仿真数据训练[24] **3 投资标的建议** - **动捕设备**:凌云光(光学动捕)、青铜视觉[23] - **摄像头**:阿比[26] - **遥操作**:当红科技、景业智能(工厂及协作场景刚需)[25][26] --- 关键数据引用 - 动作频率:RT2(1-5Hz)、派林(50Hz)、Helix(200Hz)[6][11] - 动捕成本:真机数据单条采集成本超10元,100台机器人日采8-10万条[16] - 光学动捕精度:亚毫米级[19]