Workflow
On - Device AI
icon
搜索文档
Z Potentials|专访陈羽北,Aizip打破效率瓶颈,让AI进入真实产品,推动On-Device AI的未来革命
Z Potentials· 2025-06-11 02:21
行业背景与公司定位 - AI行业面临能耗高、模型庞大、学习机制复杂等效率瓶颈问题,创新型公司正致力于突破这些难题 [1] - Aizip专注于On-Device AI模型研发,推动AI技术在硬件设备上的广泛应用,在多模态感知、语言推理及行为控制等领域取得突破 [1] - 公司定位为不具备全栈AI能力企业的后盾支持方,帮助客户实现AI技术落地 [32] 创始人背景与创业历程 - 创始人陈羽北本科毕业于清华大学电子系,博士阶段在伯克利从事AI理论研究,后在Meta从事博士后研究 [4][5] - 2020年疫情期间创立Aizip,联合创始人包括斯坦福和CMU背景的技术专家,团队注重"高能力、低ego"的人才 [16][17][18] - 创业动因包括:实现AI技术落地、把握数据入口迁移机遇、提升AI效率 [8][9] 技术理念与研究方向 - 核心研究聚焦AI三大效率问题:能量效率(人脑20瓦 vs 大模型数千瓦)、模型效率(跳蛛几百万神经元 vs 自动驾驶数十亿参数)、学习效率(人类100亿token vs LLaMA 3 15T tokens) [10] - 研究方向包括:白盒模型(探索AI内部机制)、世界模型(模拟现实世界)、小语言模型开发 [15] - 不盲目追求模型规模,而是开发"全球最小、最高效"的AI系统 [14] 产品与技术架构 - 产品围绕三类感知模态(声音、视觉、时序)和语言模型展开 [22][23] - 视觉模态包括物体识别、人脸识别、OCR等;时序模态专注于高精度"下一步预测"能力 [23] - 开发voice-AI agent,融合语音识别、小语言模型、local RAG等能力 [24] - 已实现3B参数小模型在手机端部署,可完成本地路线推荐等任务 [27] 市场前景与商业化 - 预测未来50%的AI推理将在设备端完成,拐点将在2-3年内到来 [26][31] - 商业化路径分三阶段:技术优势→规模优势→品牌优势 [34] - 已与Renesas、ADI、Qualcomm、Bosch等头部硬件厂商合作,模型年出货量达数千万级别 [36][38] - 获得"Best Sensor of the World"、"Best AI Product of the Year"等国际奖项 [38] 行业趋势判断 - On-Device AI将迎来"质价比跃迁",由市场准备、硬件演进(如苹果芯片从0.6 TOPS发展到35 TOPS)、软件突破三股力量推动 [29][30] - 云端AI与设备端AI将共存,但设备端在隐私、延迟、成本方面具优势 [26][27][28] - 看好learning与search融合的技术趋势,关注OpenAI的Operator概念 [41]