Workflow
观察学习
icon
搜索文档
AI通过“观察学习”吸取价值观 为解决跨文化适应问题提供新思路
科技日报· 2025-12-19 00:34
研究核心观点 - 美国华盛顿大学研究首次表明,人工智能系统可以通过观察人类在特定文化中的行为,学习并内化相应的文化价值观,为解决AI跨文化适应问题提供了新思路 [1] 研究方法与过程 - 研究团队尝试让AI以“观察学习”的方式,从具体文化群体的行为中吸取价值观,而非被预先植入通用准则 [1] - 研究探索AI能否像儿童一样,通过观察周围人的行为,自然而然地习得所在文化的价值观 [1] - 团队招募了190名成年人参与实验,让他们与AI代理在一款改编自游戏《Overcooked》的协作任务中互动 [1] - 实验中,参与者可选择是否将自己获得的资源无偿赠送给明显处于劣势的机器人玩家,尽管这会影响自己的任务得分,结果显示有一组参与者整体表现出更多的利他行为 [1] 研究结果与发现 - AI代理通过“逆向强化学习”方法,从所观察群体的行为中推断其行为目标与内在价值观 [2] - 在后续测试中,这些代理成功地将习得的“利他倾向”推广到捐赠资金等新场景中 [2] - 基于表现出更多利他行为的人类组数据训练的AI,在捐赠任务中表现出更高的慷慨度 [2] - 论文合著者将AI的学习过程类比为儿童通过观察父母与他人的互动,潜移默化地学会分享、关怀等社会行为,指出价值观更多是“被捕捉”而非“被教授”的 [2] 研究意义与未来方向 - 团队认为,如何创建具有文化适应性、能理解他人视角的AI,是当前社会面临的重要课题 [2] - 随着输入数据的文化多样性和体量增加,这类方法有望帮助开发出更贴合特定文化背景的AI系统 [2] - 该研究目前仍处于概念验证阶段,未来还需在更多文化情境、价值冲突场景及复杂现实问题中进一步验证其可行性 [2]