端到端智能系统
搜索文档
「CV顶会王」李弘扬投身具身智能赛道!
自动驾驶之心· 2025-12-15 00:04
公司创业动态 - 香港大学数据科学研究院助理教授、上海人工智能实验室OpenDriveLab研究科学家李弘扬已进入具身智能赛道创业 [3] - 公司围绕UniVLA的研究方向进行机器人Manipulation攻关 目前已形成长程任务的Demo [3] - 公司已组成数十人的研发团队 研究领域涵盖VLA、机器人、无人驾驶和端边计算芯片 [4] - 公司走的同样是「基座模型 + 机器人本体」的全栈自研路线 [10] - 公司愿景是通过提升少样本泛化能力 实现人形机器人在全场景下的规模化落地应用 [10] - 团队即将发布的核心模型已达到国际一流水准 且在技术跟商业化上足够清晰 [11] 创始人学术与技术成就 - 创始人李弘扬的主要研究方向为自动驾驶、具身智能及端到端智能系统应用 [6] - 其主导的《Planning-oriented Autonomous Driving》获得IEEE CVPR 2023最佳论文奖 掀起自动驾驶界「端到端」巨浪 [6] - 提出的UniAD框架将目标检测与跟踪、地图预测、轨迹预测、占据栅格预测、规划整合为同一个基于Transformer的端到端网络框架 在公开数据集nuScenes的所有相关任务上都大幅优于同类型SOTA方法 [6] - 提出的俯视图感知方法BEVFormer曾入选2022年AI论文100强 成为业界视觉检测基准 [7] - 在CVPR、ICCV、ECCV、NeurIPS、CoRL、ICLR、TPAMI、TIP等国际顶尖会议/期刊上发表论文数十篇 多次担任国际顶尖会议领域主席 [7] - 在具身智能领域 其团队构建了超大规模真实机器人操控数据集「AgiBot World」 基于百万真机、千万仿真数据集 覆盖了五大行业场景 [7] - 2025年5月 团队在arXiv平台发表论文《UniVLA: Learning to Act Anywhere with Task-centric Latent Actions》 提出以任务为中心的潜在动作框架 [7] 核心技术框架UniVLA - UniVLA框架通过无监督学习从视频数据中推导出潜在动作表示 支持跨实体和环境的机器人策略学习 实现机器人高效跨场景部署 [7] - 框架特点在于通过两阶段训练解耦任务相关与无关动态 利用DINO特征空间和语言指令增强语义对齐 结合轻量级解码器适配不同机器人硬件 [9] - 相比传统方法 UniVLA显著降低了对标注数据的依赖 仅需少量数据即可在多任务基准测试中达到最优性能 并支持从互联网视频到真实机器人的高效迁移 [10] 行业观点与趋势 - 李弘扬在2025地平线技术生态大会上表示 具身智能一定会体现出Scaling law 目前全球真正算得上做过Scaling law实验的只有一家公司 即Generalist AI(GEN-0模型) [10] - 如何就算法、数据、硬件或Infra建立一套高效率的数据采集系统 在具身智能领域是非常关键的课题 [10] - 近两年 除了有数位自动驾驶大拿创建具身智能公司外 也有多位学界专家选择投身具身智能领域 包括卢策吾、卢宗青、邵林、王鹤、赵明国等知名学者 [11]