生成建模
搜索文档
何恺明组三位本科生领衔!持续聚焦Flow模型,突破归一化流生成效率瓶颈
量子位· 2025-12-15 04:04
鱼羊 发自 凹非寺 量子位 | 公众号 QbitAI 何恺明团队新作,持续聚焦Flow模型。 论文提出名为 双向归一化流 (BiFlow) 的新框架,通过解耦前向过程——将数据映射为噪声,和逆向过程——把噪声再转回来生成图片, 成功打破了传统归一化流生成模型效率低下的问题。 值得一提的是,论文的三位一作分别是来自清华姚班和MIT的本科生。 BiFlow:逆向过程不必是前向过程的精确逆运算 归一化流方法 (NFs) 已经成为生成建模的一种原则性框架。 标准的归一化流包含前向过程和逆向过程: 与MeanFlow对流匹配的优化不同,这次主要旨在解决归一化流在生成模型中的局限。 前向过程将数据映射为噪声,逆向过程则通过对前向过程求逆来生成样本。 传统的NF模型有一个硬性规定,逆向过程必须是前向过程的精确逆运算——要像钥匙和锁一样完全匹配。这就导致了两个问题: BiFlow的核心创新就在于, 打破了"逆向过程必须是前向过程的精确逆运算"这一规则 。 设计思路是这样的: BiFLow解耦了前向过程和逆向过程的设计。 模型设计受限:因为要保证 "可逆",不能使用很多强大的通用架构 (比如视觉Transformer) ,得特 ...
李飞飞团队25年研究大盘点:从视觉理解到具身智能的全景图谱
自动驾驶之心· 2025-11-07 00:05
以下文章来源于深蓝AI ,作者深蓝学院 深蓝AI . 专注于人工智能、机器人与自动驾驶的学习平台。 作者 | 深蓝学院 来源 | 深蓝AI 点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 >>自动驾驶前沿信息获取 → 自动驾驶之心知识星球 本文只做学术分享,如有侵权,联系删文 导读 斯坦福大学 HAI 研究院(Stanford Institute for Human-Centered AI, HAI)由李飞飞教授领衔,是全球人工智能基础研究与社会治理的重要引领力量。 李飞飞现任斯坦福大学首位红杉讲席教授,美国国家工程院、国家医学院及艺术与科学院三院院士,长期专注于计算机视觉、机器学习、认知神经科学 与环境智能系统等方向。她创建的 ImageNet 数据集及相关研究奠定了深度学习在视觉理解领域的核心基础,并推动了"数据驱动 + 认知启发"的研究范式 在全球范围的普及。 在研究思路上,李飞飞团队始终强调"从算法到系统"的全链路创新,致力于通过多模态融合、可解释学习与跨域感知,实现面向真实世界的智能体建模。近年 来,团队的工作从视觉表征学习延伸至多模态生成、具身 ...