Workflow
梯度下降
icon
搜索文档
开学了:入门AI,可以从这第一课开始
机器之心· 2025-09-01 08:46
AI核心概念与学习方法 - 人工智能通过机器学习从数据中自行学习规律而非依赖预设规则 核心方法包括有监督学习(使用标记数据训练模型) 无监督学习(从未标记数据中发现模式)和强化学习(通过试错和奖励机制优化行为策略) [9][12] - 2012年Google通过无监督学习使神经网络在观看海量YouTube视频后自发识别"猫"的概念 成为深度学习里程碑事件 [11] - AlphaGo击败人类棋手和ChatGPT的崛起标志着AI技术进入爆发期 深度学习依赖算力(GPU) 数据(互联网)和算法三要素共同推动 [6][69] AI技术基础能力 - 数学是AI底层逻辑的核心 线性代数处理向量与矩阵 概率统计管理不确定性 微积分通过梯度下降优化模型参数 [13] - Python是AI开发首选语言 拥有简洁语法和强大生态圈 关键工具库包括NumPy/Pandas(数据处理) Scikit-learn(机器学习) TensorFlow/PyTorch(深度学习) [19][21] - 其他编程语言各有侧重 R语言擅长统计分析 C++适用于高性能计算 Java用于企业级系统开发 [23] 实践与学习路径 - 学习过程需结合理论深度(数学) 工具掌握(编程)和实践高度(项目) 建议通过Kaggle竞赛 GitHub开源项目和复现论文等方式积累经验 [28][47][53] - 建议建立持续学习机制 关注顶级学术会议(NeurIPS/CVPR/ICML) 筛选高质量信息源 避免被技术营销内容干扰 [24][25] - 初学者可从微项目入门 如用Pandas分析天气数据 用Scikit-learn预测泰坦尼克号幸存者 逐步构建可交互的Demo展示能力 [50][51][53] AI应用领域与职业方向 - 核心职业路径包括机器学习工程师(算法落地) 数据科学家(数据洞察) 算法研究员(前沿探索) 具体职位衍生出算法工程师 AIGC工程师等细分方向 [38][40] - AI与垂直领域结合创造新价值 包括艺术设计(生成式AI创作) 金融商业(量化交易/风控) 医疗健康(新药研发/影像分析) 材料科学(分子模拟)等领域 [42][43] - AI技能将成为通识能力 未来差距体现在顶尖人才(创造AI)与普通劳动者(使用AI)之间 需注重培养解决问题能力和人机协同思维 [37][45][55] AI发展历程 - 1956年达特茅斯会议正式提出人工智能概念 早期发展形成符号主义(逻辑推理) 联结主义(模式识别) 行为主义(环境交互)三大流派 [58][64] - 经历两次AI寒冬后 统计机器学习崛起 2012年AlexNet在ImageNet竞赛中以压倒性优势夺冠 标志着深度学习时代的开启 [66][67] - 现代AI正融合三大流派优势 追求兼具学习能力 逻辑推理和行动能力的综合智能体系 [65]
揭秘LLM“思考”之谜:推理即“梯度下降”,元学习框架解构训练过程,还给优化提供新思路
量子位· 2025-06-10 04:05
RaML框架核心观点 - 大语言模型(LLM)的推理过程可类比为梯度下降优化过程,推理轨迹中的每个令牌对应参数的一次隐式更新[2] - 研究团队通过理论推导证明Transformer模型中增加的推理轨迹令牌会内化为对模型参数的更新[2] - 实证验证显示随着推理轨迹解码,模型对正确答案的置信度逐步上升,证实推理轨迹作为参数更新的合理性[4] 元学习视角下的LLM推理 - 将LLM推理训练置于元学习框架下解释,每个具体问题视为独立任务[7] - 推理轨迹承担"内循环优化"角色,动态调整内部参数适应特定任务[8] - 外循环优化基于内循环结果调整"学习策略",形成双循环机制实现泛化能力[8] - 该框架统一解释LLM在不同训练策略、推理策略和任务泛化上的表现[9] 训练方法对比 - 有监督微调(SFT)模型相比纯强化学习(RL)模型在数学基准上表现更优[10] - SFT提供"最优梯度指导",对较小模型收益显著(Pass@8提升31%,mG-Pass@8提升175%)[13] - RL理论上限更高但需要更强基座模型,可采用SFT+RL混合训练策略[12] 推理轨迹特性 - 更长的推理轨迹对应更好的内循环优化效果,与传统优化算法迭代次数原理类似[14] - "反思"令牌能显著改变模型置信度,帮助跳出局部最优解[15][17] - 强制结束思考过程的令牌序列可能导致模型停留在次优解[18][20] 跨任务泛化能力 - 仅在数学推理训练即可提升科学推理和代码推理任务表现[21] - 模型学习到普适推理特征,通过元学习机制快速适应新任务[23] 实践优化策略 - 增加每个问题的训练轨迹数量(相当于扩大元学习支撑集)可提升推理表现[25] - 对长推理轨迹进行摘要提炼,在保持性能同时显著降低解码开销[30] - 未来可探索更高效的推理轨迹提取方法及任务配比优化[31] 研究价值 - 为理解大模型推理提供全新视角,揭示其与元学习、梯度下降的关联[32] - 理论框架具有实践指导意义,已开源代码和论文供进一步研究[32]
【广发金工】AlphaForge:基于梯度下降的因子挖掘
公式化因子挖掘与AlphaForge框架 - 神经网络模型能有效预测股票截面收益率差异,构造更多公式化特征可丰富模型输入[1] - 传统方法如遗传规划和OpenFE存在优化方向随机、过拟合等问题[3][9] - AlphaForge通过生成器和预测器设计实现梯度下降优化,解决传统方法缺陷[10][13][14] AlphaForge技术架构 - 生成器采用DCGAN网络和Masker结构,保证连续可导实现梯度传播[23][26][28] - 预测器使用卷积结构学习因子表达式与IC得分的对应关系[29] - 损失函数设计包含因子得分和多样性惩罚项[15] 因子挖掘效果 - 100个样本外因子IC均值4.24%,最高7.10%,最低2.29%,中位数4.34%[38][39] - 因子间截面相关性均值9.31%,时序相关性均值18.57%[43][44] - 因子表达式长度多在2-20之间,可解释性一般但有效性突出[46][47] 因子合成表现 - LGBM和等权合成因子IC均值分别为11.68%和13.29%,相关性54.23%[53] - 进一步合成后IC均值提升至13.85%,年化超额17.33%,回撤-5.41%[53] - 在沪深300、中证500、中证1000股票池中均表现稳定[58][60][64] 指数增强策略 - 沪深300指增年化超额9.28%,回撤-7.25%,信息比率1.90[74] - 中证500指增年化超额10.98%,回撤-10.65%[76][77] - 中证1000指增表现最优,年化超额14.28%,回撤-10.96%,信息比率2.27[79][80] 框架优势总结 - 相比传统方法实现梯度下降优化,避免随机生成缺陷[82] - 生成器-预测器结构保证因子生成的连续性和有效性[82] - 滚动训练验证显示框架在不同市场环境下的稳定性[33][82]