Workflow
机器人操作
icon
搜索文档
硬件不是问题,理解才是门槛:为什么机器人还没走进你家
锦秋集· 2025-09-29 13:40
为什么机器人还没走进你家? 在过去十年里,我们见证了人工智能写诗作画、回答问题、甚至通过考试。但当这些"聪明大脑"让人 惊叹时,机器人却依然停留在实验室和展厅里:它们会在视频中完成惊艳的动作,却很难在你厨房里帮 忙洗碗,或者替你客厅里收拾好一地的玩具。 很多人直觉上以为,这是因为硬件不够强:机械手还不够灵巧,传感器还不够精密,马达还不够迅捷。 但事实是, 硬件的发展速度远快于软件,真正的瓶颈在于——机器人无法像人类一样理解和预测物理 世界。硬件不是问题,理解才是门槛 。 这背后涉及一个核心问题:当机器人伸手去触碰一个杯子、一块布料或一包薯片时,它能否在动作发生 之前,预判出会发生什么?会不会打滑?会不会被压碎?能否保持稳定?对人类来说,这些判断几乎是 下意识的,但 对机器人而言,却是需要复杂建模和计算的巨大挑战 。 近期发表在 Science Robotics 的一篇综述文章,正是聚焦于这一关键难题。由加州大学圣地亚哥分 校、MIT、斯坦福和谷歌等机构的顶尖学者联合撰写,文章系统梳理了"基于学习的动力学模型"——一 种让机器人能够从感知数据中直接学习"世界规则"的方法。 · 相比传统的解析物理模型,这种方法或 ...
最新综述!多模态融合与VLM在具身机器人领域中的方法盘点
具身智能之心· 2025-09-01 04:02
多模态融合与视觉语言模型综述 - 文章系统综述了多模态融合和视觉语言模型在机器人视觉领域的应用,涵盖语义场景理解、3D目标检测、SLAM、具身导航和操作控制等任务,并比较传统方法与新兴大模型方法的优劣 [3][4][11][57] 语义场景理解 - 多模态融合通过整合RGB图像、深度信息、LiDAR点云和语言数据,显著提升复杂环境下物体识别、语义分割和关系建模的准确性与鲁棒性 [9] - 主流融合策略分为早期融合(输入层直接拼接)、中期融合(特征层交互如注意力机制)和后期融合(决策层整合),现代方法趋向统一架构实现隐式协作 [10][12] - 实现路径包括编码器-解码器架构(如DeepLabv3+)、基于注意力的Transformer(如MRFTrans)和图神经网络方法(如MISSIONGNN) [12] 3D目标检测 - 多模态融合结合相机(丰富纹理)和LiDAR(精准几何),解决单一传感器在遮挡、极端天气或低反射物体下的性能缺陷 [16][18][19] - 融合设计核心涉及何时融合(早期/中期/后期)、融合内容(特征图、点云、BEV视图)及融合方法(从非注意力型到基于注意力的跨模态交互) [17] - 技术演进从早期MV3D、AVOD到TransFusion(Transformer建模跨模态依赖)和BEVFusion,并扩展雷达-相机融合(如CenterFusion)和4D雷达提升动态感知 [20][21][22] 具身导航 - 分为目标导向导航(依赖视觉语义与空间先验)、指令跟随导航(结合自然语言理解)和基于对话的导航(主动交互与动态调整),体现从感知到交互的演进 [24][26][27][28] - 代表性系统如InstructNav(零样本规划)和NaVid(视频驱动泛化),强调多模态融合在复杂环境中的适应能力 [27][33] 视觉定位与SLAM - 多模态融合(如DeepVO、D3VO)和自监督学习解决光照变化、遮挡及动态场景中的定位问题,神经隐式表示(如NeRF)压缩场景几何与语义信息 [29][30] - SLAM从传统LiDAR-SLAM(几何精准)和V-SLAM(语义丰富)向多模态融合(如V-LOAM、LIC-Fusion)和神经化转型(如UVIO用Transformer建模时序) [34][35] - 未来方向包括轻量化、自监督与感知决策一体化,提升在动态环境中的语义理解与规划能力 [35][38] 视觉-语言-动作模型(VLA) - VLA模型整合视觉感知、语言理解和动作生成,实现从"感知"到"执行"的闭环,代表方法包括RT-2(预训练对齐)、RoboMamba(动作动态建模)和3D-VLA(三维点云融合) [36][37][39] - 高效化趋势明显:OpenVLA通过LoRA降低训练成本,DeeR-VLA采用动态退出机制减少计算开销,VoxPoser支持语言驱动的实时策略调整 [39][40] - 多模态融合使机器人在操作任务中实现感知更强、理解更深和执行更准的三重跃迁 [47] 视觉-触觉融合 - 视觉提供全局物体信息(位置、形态),触觉补充局部反馈(接触力、滑动),提升抓取精度与稳定性,如FusionNet-A融合特征用于抓取规划 [41][42][48] - 触觉在抓取执行阶段实时调整力度和姿态,避免滑动或掉落,并通过时空注意力(如Li等人方法)或自监督学习(如MimicTouch)优化稳定性预测 [44][45][48] 视觉语言模型演进 - 预训练阶段通过对比学习(如CLIP)或自监督方法对齐多模态表示,实现零样本迁移和泛化能力 [50] - 跨模态对齐方法包括对比学习(拉近相关样本)、自监督学习(掩码预测)和跨模态生成(如DALL·E),解决模态间语义粒度差异 [51][55] - VLM从Flamingo、PaLM-E发展到Gemini、Llama-3.2,支持多模态(图像、文本、音频)和结构优化(MoE、稀疏注意力),增强指令理解与推理能力 [53][54] 挑战与未来方向 - 关键挑战包括跨模态对齐的语义偏差、算力有限平台的轻量化部署需求,以及真实环境中的传感器异质性和延迟问题 [58] - 未来重点方向包括结构化空间建模与记忆机制、可解释性与伦理适应性提升,以及发展具备长期学习能力的认知型VLM架构 [58]
VLA之外,具身+VA工作汇总
自动驾驶之心· 2025-07-14 10:36
具身智能领域研究进展 - 2025年将涌现大量具身智能与视觉动作融合的研究成果,涵盖机器人操作、全身控制、sim2real迁移等方向,其中字节跳动Seed团队提出Chain-of-Action轨迹自回归建模方法[2] - 扩散策略成为主流技术路线,涉及潜在空间强化学习(Steering Your Diffusion Policy)、模态组合扩散(Modality-Composable Diffusion Policy)、响应式噪声中继扩散(Responsive Noise-Relaying Diffusion Policy)等变体[2][3][4] - 单次学习(One-Shot)技术取得突破,包括You Only Teach Once双手机器人操作、FUNCTO工具操作模仿、Human2Robot人机视频配对学习等方案[2][3][5] 机器人操作技术创新 - 灵巧操作领域出现AnyDexGrasp通用抓取系统,学习效率达到人类水平,支持不同手型适配[3] - 触觉融合技术发展显著,包含Adaptive Visuo-Tactile Fusion多感官融合、KineDex触觉运动教学、Tactile Beyond Pixels多模态触觉表征等方案[3][7] - 非prehensile操作取得进展,DyWA动力学自适应模型实现通用化非抓取操作,SPOT基于SE(3)的物体中心轨迹扩散提升操作精度[5][8] 仿真到现实迁移 - sim2real技术出现FetchBot零样本迁移方案,可在杂乱货架实现物体抓取[3] - 世界模型应用广泛,LaDi-WM基于潜在扩散的预测模型、GAF高斯动作场动态模型、World4Omni零样本框架等提升跨域迁移能力[7][9] - 数据生成技术突破,DemoGen合成演示生成、GraspMolmo大规模合成数据生成等方法解决数据效率问题[3][7] 算法架构演进 - 2024年扩散策略持续优化,出现1B参数规模的Transformer扩散策略(Scaling diffusion policy)、Consistency Policy一致性蒸馏加速、One-Step Diffusion单步蒸馏等高效方案[9][11] - 3D表征成为新趋势,3D Diffuser Actor、GenDP 3D语义场、Lift3D 2D升维等方法增强空间理解[9][11] - 多任务学习框架创新,包含MoE-Loco专家混合架构、H3DP三重层次扩散策略、Mamba Policy混合选择状态模型等[5][9] 人机交互技术 - 人类示范利用效率提升,Phantom仅用人类视频训练、ZeroMimic从网络视频蒸馏、HACTS人类协同驾驶系统等方法降低数据依赖[4][5][7] - 跨具身学习取得进展,SHADOW利用分割掩码跨具身迁移、UniSkill跨具身技能表征实现视频模仿[4][6] - 人形机器人技术突破,HumanoidPano全景-LiDAR跨模态感知、Trinity模块化AI系统、Distillation-PPO两阶段强化学习框架等推动发展[5]