Workflow
智能降级
icon
搜索文档
智能降级
36氪· 2025-08-25 00:10
文章核心观点 - 当前智能体开发存在"智能降级"陷阱 即通过添加人类规则(提示词)限制大模型通用智能 导致最终产品价值为负且用户体验不佳[1][4] - 规避该陷阱需遵循"智能优先"原则 停止教AI思考 转而提供高质量独家数据作为思考材料[6] - 未来成功智能体应聚焦三大方向:独占性上下文整合、高势能工具箱提供、自我优化能力构建[6][14][19] - Glean类"上下文平台"代表正确方向 通过打通企业数据孤岛实现智能乘法效应 而预设流程的"工作流AI"(如5万美元合同分析工具)因灵活度不足必然失败[20][26][34] - 终极形态是"无人公司" 人类仅设定目标与监督 智能体体系自主决策执行 该转型需以数据中台为底座[36][39][43] 智能降级问题分析 - 根本原因在于人类试图用提示词规则优化AI 实则戕害其基于海量数据训练的通用智能与涌现能力[2] - 规则限制导致损失大于局部收益 用户反馈"不好用" 尤其当需求敞口巨大且贴近现实(如律师工作)时弊端显著[2][4] - 大模型及通用搜索技术进步反而加剧该陷阱 因底层智能增长与上层规则约束产生根本性冲突[5] 智能优先解决方案 - 核心逻辑是承认AI无属性智能已超越人类 人类角色应从"蹩脚老师"转为"情报官" 提供独家高质量数据与上下文[6] - 需构建复杂评估系统以确保目标达成 但具体技术细节未展开说明[6] - 企业独占性上下文(如内部会议记录、客户数据、产品研发信息)构成唯一护城河 智能体需安全高效整合这些私有数据[7][8][9] - 需提供API工具箱(如查库存、下订单、发邮件)而非僵化流程 让AI自主选择工具达成目标[16][18] - 人类侧重点应是补数字化课程 而非优化智能技巧 最大成本与障碍来自人力而非技术[12][13] 产品形态对比 - 失败形态(工作流AI):以5万美元合同分析工具为例 存在上下文缺失、流程僵化、价值孤点三大缺陷 深度整合不足导致灵活度低下[20][24][25] - 成功形态(上下文平台):以Glean为例 不预设流程 专注打通企业数据孤岛(Slack、Google Drive、Jira、Salesforce等)构建统一知识图谱[26][27] - Glean模式本质是数据通路构建 其价值随大模型升级(如GPT-4到GPT-5)暴增 而工作流AI可能失效[34] - 数据中台是智能体基础底座 国内数据中台项目大量失败反映AI深度应用现实难度[28][32][42] 行业范式转变 - 从"流程优先"(人类设计流程、AI辅助)转向"智能优先"(AI处于C位、人类搭建环境)[36][37][38] - 终极形态为无人公司:智能体体系根据目标(Goals)、上下文(Context)、工具(Tools)自主运行 人类仅设定目标与监督结果[39][43][44] - 需重新定义AI本质 避免上述规则导致智能降级 但该理念尚未被广泛理解认同[45]