Workflow
显式与隐式之争
icon
搜索文档
港中深韩晓光:3DGen,人类安全感之战丨GAIR 2025
雷峰网· 2025-12-13 09:13
文章核心观点 文章通过港中深助理教授韩晓光的视角,探讨了在视频生成模型(如Sora)兴起的背景下,三维生成与世界模型构建的必要性及其不可替代的价值 核心观点认为,尽管端到端的“炼丹”式AI在性能上取得突破,但为了满足人类对可解释性、安全感和精细可控的需求,尤其是在构建可交互的虚拟世界、发展具身智能以及实现数字到实体制造等领域,三维生成与显式的、结构化的建模方法是不可或缺的 [2][3][4][58][61][63] 三维生成发展历程与现状 - 三维生成在深度学习兴起前就已存在,早期主要聚焦于“类别限定”的生成,即为椅子、车辆等特定类别分别训练模型 [9] - “开放世界”的三维生成大约从2023年的Dreamfusion工作开始兴起,实现了从文本直接生成3D模型,但基于优化方法,生成速度较慢,通常需要半小时到一小时 [11][12][14] - 当前进入大模型时代,例如Adobe的Large Reconstruction Model和上海科大的Clay工作提出了“原生模型”概念,商业应用如腾讯混元3D的3.0版本已能实现从单张图像生成高质量三维模型 [16] 三维生成的发展趋势 - 趋势一:更精细,追求几何层面的极致细节表现,例如数美万物的Spark 3D [19] - 趋势二:更结构化,生成的三维模型需要能被拆解成独立部件以便编辑,例如混元3D的“X-Part”工作 [19] - 趋势三:更对齐,解决生成模型与输入图像在细节上不对应的问题,例如输入图像栅栏有5条横杠而生成模型变成6条的问题 [20] 视频生成兴起对三维生成的冲击与反思 - 视频生成技术(如Sora)的出现对三维内容创作领域造成冲击,因为它能用文本指令直接输出视频,跳过了传统三维建模、绑定、渲染等复杂流程 [24][28] - 视频生成当前存在核心局限:物理模拟不够真实、3D空间不一致、内容可控性不足(如难以精细修改视频中物体的特定属性) [29][30] - 尽管Sora2和谷歌Veo3已展示出初步的可控能力(如控制视角变化),但真正的危机感促使行业思考视频生成模型是否真的不需要3D [34][37] 视频模型与三维结合的潜在路径 - 路径一:完全不用3D,采用纯2D的端到端范式,依赖海量视频数据训练 [38] - 路径二:利用3D仿真作为“世界模拟器”,先根据条件生成可控但不真实的CG视频,再用神经网络将其转化为真实视频 [39] - 路径三:将3D信息作为控制信号输入,例如基于三维重建的场景模型来生成空间一致的长视频,以解决“长程记忆”问题 [38][39] - 路径四:用3D合成数据辅助训练,利用3D仿真批量生成可控的、带标注的视频数据,以增强端到端视频模型的训练 [39] 世界模型的分类与三维的必要性 - 世界模型的核心是对真实世界进行数字化,以计算方式理解和表达规律,并用于预测 [41] - 第一类:服务于“人类共同体”的宏观世界模型,如气候模拟、社会系统推演 [43] - 第二类:服务于“个人”的体验与探索模型,核心是可交互性,需要数字化物理与交互规律以构建沉浸式虚拟世界 [43] - 第三类:给机器用的世界模型,如用于自动驾驶或具身智能机器人,需要能根据动作预测环境变化 [44] - 为实现可交互的世界模型(如VR体验需要触觉反馈),3D是必要的 [45] 具身智能与三维生成的关系 - 发展具身智能的主流方法是“向人类学习”,这需要首先对人类与物体的交互过程进行精确的、动态的数字化捕捉与还原,3D乃至4D的还原是必要基础 [48] - 为了让机器人安全高效地探索和学习,需要创造可交互的三维仿真环境,因此具身智能同样离不开3D [48] 从数字到实体的制造需求 - 在三维打印、智能制造、CAD模型生成等领域,实现从虚拟设计到实体制造的个性化定制,3D是绝对的基础,例如牙齿生成项目就是为了制造精确的牙齿模型 [50][52] 技术路线之争:显式与隐式 - 隐式(数据驱动)路径:构建端到端神经网络,依赖“潜变量”编码所有信息,是典型的“黑箱”逻辑 [56] - 显式(模型驱动)路径:显式地重建三维模型,并基于明确的几何与物理公式进行计算和判断,依赖对世界的明确建模 [57] - 可解释性与安全感:显式的、可视化的3D/4D信息是人类能够直观理解和信任的维度,能带来安全感,而高维的“潜变量”则让人难以理解其运作原理 [57][58][59] - 当前AI时代过分追求性能而可解释性不足,实现可解释性需要3D作为人类能够直观理解的基石 [61][63]