DiffRefiner
搜索文档
浙大一篇中稿AAAI'26的工作DiffRefiner:两阶段轨迹预测框架,创下NAVSIM新纪录!
自动驾驶之心· 2025-11-25 00:03
文章核心观点 - 提出一种名为DiffRefiner的全新两阶段轨迹预测框架,该框架融合了判别式轨迹提议与生成式扩散精炼,旨在解决端到端自动驾驶规划中的多模态挑战 [3][9] - 该框架通过基于Transformer的提议解码器生成粗粒度轨迹预测,再通过扩散精炼器进行迭代优化,显著提升了规划性能 [3][9] - 在NAVSIM v2和Bench2Drive两个公开基准测试中均达到当前最优性能,EPDMS分数为87.4,驾驶分数为87.1,成功率为71.4% [3][11][41][42] 技术背景与动机 - 传统单阶段回归方法在处理轨迹预测任务的多模态特性方面存在局限,易导致预测效果欠佳和泛化能力差 [7] - 基于扩散模型的生成式方法能学习未来运动的潜在分布,生成多样化轨迹,但依赖无结构噪声或固定锚点初始化,存在计算延迟和场景适应性不足的问题 [2][8] - 离散化解空间的方法(如基于评分的方法)随着锚点集规模增大会导致计算复杂度显著增加,限制其在延迟敏感系统中的应用 [7] DiffRefiner框架设计 - 采用粗到细的两阶段架构:第一阶段使用基于Transformer的提议解码器回归预定义轨迹锚点,生成粗粒度轨迹提议 [9][14][20] - 第二阶段引入条件扩散精炼器,对初始提议进行迭代去噪与优化,并设计了细粒度去噪解码器以增强场景适应性 [9][14][22] - 框架整合三个关键组件:以BEV为中心的感知模块、粗轨迹提议解码器和基于扩散的轨迹精炼器 [14] 关键技术创新 - 提出细粒度语义交互模块,通过交叉注意力和可变形注意力分层整合全局场景上下文与局部几何细节,实现轨迹与环境的精准对齐 [10][27][30] - 采用自适应门控网络动态融合全局场景表征与局部语义信息,平衡粗粒度上下文理解与精准空间对齐 [10][32] - 通过两阶段训练方案优化模型,采用赢者通吃策略选择最接近真实轨迹的预测进行损失计算 [34][36] 实验验证与性能 - 在NAVSIM v2开环基准测试中,EPDMS分数达到87.4,使用ResNet34骨干网络时相比之前最佳方法提升3.7%,使用V2-99骨干网络时提升1.6% [3][41] - 在Bench2Drive闭环基准测试中,驾驶分数达到87.1,成功率达到71.4%,相比之前最佳方法驾驶分数提升0.3,成功率提升2.3 [3][42] - 消融实验证实了各组件有效性,引入精炼器使EPDMS提升1.2,仅需一次去噪步骤即可实现接近最优性能,表明框架适用于实时系统 [43][50] 性能优势体现 - 在复杂交互场景中,该方法能更好地关注细粒度场景细节,减少与周围智能体的碰撞,并更严格地遵守地图约束 [51] - 该混合范式在大多数多能力指标上均取得持续提升,证明了其在多样化交互式驾驶场景中的鲁棒性和有效性 [42]