Workflow
Agent AI
icon
搜索文档
李飞飞的答案:大模型之后,Agent向何处去?
虎嗅APP· 2025-09-07 02:51
Agent AI核心框架 - 提出由环境与感知、认知、行动、学习、记忆五大模块构成的智能体认知闭环架构 这代表对未来通用人工智能发展路径的前瞻性思考[10][12][17] - 感知模块具备多模态信息接收能力和任务规划与技能观察功能 使智能体能主动从物理或虚拟世界获取信息[12] - 认知模块作为处理中枢 由大语言模型和视觉语言模型提供世界知识、逻辑推理和上下文理解能力[14] - 行动模块通过控制器生成物理世界交互指令或虚拟世界API调用[15] - 学习模块支持预训练、零样本/少样本学习、强化学习和模仿学习等机制 实现持续自我进化[16] - 记忆模块采用持久化结构化系统存储知识、逻辑和推理结果 支持长期经验积累[17] 大模型驱动机制 - 大型基础模型特别是LLM和VLM的成熟是Agent AI框架的根本驱动力 为智能体提供零样本规划能力[20] - 大模型存在的"幻觉"问题可通过环境交互机制解决 环境反馈能迫使模型内部知识与外部现实对齐[21] - 基础模型存在社会偏见风险 需通过多元化数据训练和偏见检测机制确保包容性[22] - 个人数据隐私保护需建立明确法规框架 通过提示工程和人类监督层确保安全可控[22] 游戏领域应用 - 彻底改变传统NPC由固定脚本驱动的模式 实现基于记忆、目标和情感的动态行为调整[25] - 支持玩家用自然语言与游戏世界互动 为开放世界游戏带来前所未有的沉浸感和自由度[25] - 可作为创作者副驾驶 根据指令自动生成游戏关卡、道具和完整3D场景 大幅提升开发效率[25] 机器人领域应用 - 用户可用日常语言下达指令 机器人自主规划执行复杂物理操作 如GPT-4V可将人类演示视频转化为可执行任务序列[27] - 通过领域随机化技术在模拟训练中引入变化 增强对真实世界差异的鲁棒性[27] - 融合视觉、语言、触觉等多模态信息理解环境 实现更精准的物理交互[27] 医疗健康应用 - 作为医疗聊天机器人进行初步问诊和病史收集 基于医学知识库提供诊断建议 提升初级诊疗覆盖率[29] - 连接实时更新的医学数据库 在生成诊断时同步进行事实核查和来源引用 抑制模型幻觉[29] - 处理分流患者信息并监控慢性病患者生命体征 实现高效个性化健康管理[31] 发展挑战与方向 - 需解决视觉、语言、听觉、动作等多模态深度融合问题 而非浅层拼接[32] - 需训练能跨游戏、机器人和医疗等不同领域工作的通用智能体 而非定制化模型[32] - 建立科学评测体系至关重要 研究团队已提出CuisineWorld多智能体协作基准和VideoAnalytica视频理解基准[32]
李飞飞的答案:大模型之后,Agent向何处去?
虎嗅· 2025-09-05 00:34
论文核心观点 - 李飞飞领衔的14位专家团队发布80页Agent AI综述 提出统一的多模态智能体认知框架 为行业提供前瞻性发展蓝图 [1][2][3][5][6][61] 技术架构 - 建立感知-决策-行动加记忆与学习的五模块认知闭环架构 形成动态迭代的智能交互系统 [9][10][26] - 感知模块支持多模态信息输入 包含视觉听觉文本传感器数据 并具备任务规划与技能观察能力 [12][13][14] - 认知模块由大语言模型和视觉语言模型驱动 负责多步推理与策略制定 [16][17] - 行动模块生成物理世界或虚拟世界的操作指令 通过控制器改变环境状态 [18][19] - 学习模块支持预训练/零样本/强化学习/模仿学习等多种机制 通过环境反馈持续优化 [20][21][22] - 记忆模块实现持久化结构化存储 保留知识逻辑推理路径 支持经验复用 [23][24][25] 基础模型作用 - 大语言模型和视觉语言模型为智能体提供世界知识库与零样本规划能力 显著降低任务规则编写成本 [28][29][31] - 模型存在幻觉问题 Agent通过环境交互获得物理规律反馈 倒逼模型与现实世界对齐 [32][33][34][35] - 基础模型可能继承社会偏见 需通过多元化训练数据和偏见检测机制确保包容性 [36][37] - 在医疗等敏感领域需建立数据隐私保护框架 通过提示工程和人类监督层确保安全可控 [38][39] 应用场景 - 游戏领域可创建具备记忆情感的NPC 支持自然语言交互与动态行为调整 显著提升开放世界沉浸感 [41][42][43][44] - 作为AI副驾驶自动生成游戏关卡道具及3D场景 大幅提高开发效率 [45] - 机器人领域实现自然语言指令解析 自主规划复杂物理操作序列 [47][48] - 通过GPT-4V理解人类演示视频并转化为可执行任务 简化编程流程 [49] - 采用领域随机化技术增强模拟到现实的迁移能力 提升环境适应性 [50] - 融合视觉语言触觉等多模态信息实现精细环境交互 如根据"易碎"指令调整抓取力度 [51] - 医疗领域作为聊天机器人进行初步问诊病史收集 提升初级诊疗覆盖率 [54] - 连接实时医学数据库实现事实核查与来源引用 抑制模型幻觉保障诊断准确性 [55] - 处理分流患者信息并监控慢性病体征数据 实现高效个性化健康管理 [57] 发展挑战 - 需突破视觉语言听觉动作等多模态深度融合技术 而非简单拼接 [59] - 需开发跨游戏机器人医疗等不同领域的通用智能体 而非定制化模型 [60] - 建立科学评测体系如CuisineWorld多智能体协作基准和VideoAnalytica视频理解基准 [61]
李飞飞的答案:大模型之后,Agent 向何处去?
36氪· 2025-09-04 08:28
Agent AI核心架构 - 提出由环境与感知、认知、行动、学习与记忆五大模块构成的完整认知闭环架构 实现从感知到行动的动态迭代智能体系[5][10] - 感知模块主动从物理或虚拟世界获取多模态信息 并内嵌任务规划与技能观察能力实现有目的的信息理解[7][8] - 认知模块作为处理中枢 由大语言模型(LLM)和视觉语言模型(VLM)驱动 负责解释信息、多步推理和策略制定[8] - 行动模块生成具体操作指令 通过控制器执行物理世界交互或虚拟世界API调用[8] - 学习模块支持预训练、零样本/少样本学习、强化学习和模仿学习等多种机制 通过环境反馈实现持续优化[9] - 记忆模块突破传统上下文窗口限制 形成持久化结构系统存储知识、逻辑和推理结果[10] 大模型驱动机制 - LLM和VLM通过海量数据预训练内化世界常识 为Agent提供强大的零样本规划能力 显著降低任务规则编写成本[11][12] - 环境交互成为解决大模型幻觉问题的关键锚点 通过真实或模拟环境的物理反馈倒逼模型实现知识与现实对齐[13] - 需通过多元化数据训练和偏见检测机制解决基础模型继承的社会偏见问题 将包容性作为核心设计原则[13] - 在医疗等敏感领域需建立明确法规框架 通过提示工程和人类监督层确保数据隐私与行为安全[13] 应用场景实践 - 游戏领域彻底改变NPC行为模式 基于LLM的Agent可拥有独立记忆情感 实现动态行为调整和自然语言交互 提升沉浸感与开发效率[14][15] - 机器人领域实现自然语言指令驱动 通过GPT-4V理解人类演示视频并转化为可执行任务 结合多模态感知实现精细物理操作[17] - 医疗健康领域应用包括智能问诊聊天机器人 连接实时医学数据库进行事实核查 以及慢性病监控与预警系统提升诊疗效率[19][21] 行业影响与验证 - 论文框架已获谷歌 OpenAI和微软等主流厂商实际验证 其核心打法均遵循论文提出的能力栈推进[1][4] - 尽管发表仅半年 该综述已成为AI领域纲领性著作 为碎片化的Agent研究提供系统化框架与发展地图[4][22] - 行业面临多模态深度融合、跨领域通用化及标准化评测体系建立等核心挑战 需突破现有技术局限[22]