视听导航

搜索文档
具身目标导航/视觉语言导航/点导航工作汇总!
具身智能之心· 2025-08-12 07:04
点目标导航 - 无模型与基于模型学习规划方法比较研究 展示不同方法在点目标导航任务中的性能差异[4] - RobustNav基准测试平台专注于评估具身导航系统的鲁棒性 涵盖多种干扰场景[4] - 视觉里程计技术在点目标导航中表现出惊人效果 为定位提供新解决方案[5] - 可微分SLAM-Net框架实现粒子SLAM的端到端学习 提升视觉导航精度[5] - DD-PPO算法从25亿帧数据中学习接近完美的点目标导航器 训练规模达2.5B frames[5] - 占用预测技术实现高效探索与导航 通过环境结构预判提升路径规划效率[6] - 辅助任务加速点目标导航学习过程 通过多任务学习提升训练效果[6] - 主动神经SLAM方法结合学习与探索 实现动态环境下的自适应导航[6] 视听导航 - 学习语义无关且空间感知的表示 提升视觉-音频导航的泛化能力[7] - SoundSpaces 2.0仿真平台支持视觉-声学学习研究 提供多模态训练环境[8] - 对抗性音频-视觉导航研究声学干扰下的系统鲁棒性[8] - 动态声源的主动音频-视觉分离技术 实现移动环境下的声源定位[8] - Move2Hear系统通过主动移动实现声源分离 提升音频采集质量[8] - 语义音频-视觉导航结合语义理解与多模态感知[8] - 航路点设置学习框架优化音频-视觉导航路径规划[8] 对象目标导航 - DivScene基准测试评估LVLM在多样化场景中的对象导航能力[9] - MOPA模块化框架利用点目标智能体实现对象导航[9] - 自监督对象目标导航通过现场微调提升适应能力[9] - 协助请求学习框架优化具身视觉导航中的人机交互[9] - ProcTHOR程序化生成平台支持大规模具身AI训练[10] - 分层对象-区域图模型增强对象导航的空间推理能力[13] - 多对象导航基准MultiON评估语义地图记忆性能[14] - 对象导航重评估研究对智能体导航能力的标准化测试[16] 图像目标导航 - 实例感知的探索-验证-利用框架提升实例图像目标导航精度[17] - 可渲染神经辐射地图技术实现新型视觉导航表示[17] - 最后一公里具身视觉导航研究近距离精确定位问题[17] - 拓扑语义图记忆系统增强图像目标导航的环境理解[19] - 无强化学习导航方法探索免模拟训练新范式[19] - 视觉图记忆结合无监督表示学习提升导航效率[19] - 神经拓扑SLAM实现视觉导航中的地图构建与路径规划[19] 视觉语言导航 - SASRA智能体实现连续环境中的时空推理导航[22] - 语言对齐航路点监督方法提升连续环境导航精度[22] - 历史感知多模态Transformer融合时序与多模态信息[22] - Airbert领域内预训练模型专为视觉语言导航优化[26] - 航路点模型指导连续环境中的指令导航[26] - 环境随机混合技术增强视觉语言导航泛化能力[27] - 自激励通信智能体实现真实世界视觉对话导航[27] - 情景Transformer架构专为视觉语言导航设计[27] - Pathdreamer世界模型支持室内导航仿真预测[28]