自动驾驶规划

搜索文档
给自动驾驶感知工程师的规划速成课
自动驾驶之心· 2025-08-08 16:04
自动驾驶规划技术演进 - 模块化系统中机器学习主要影响感知部分,下游规划组件变革较慢[3] - 传统系统易于解释和快速调整,但机器学习可扩展性更强[4] - 学术界和工业界推动下游模块数据驱动化,通过可微接口实现联合训练[4] - 生成式AI和多模态大模型在处理复杂机器人任务方面展现潜力[4] 规划系统核心概念 - 规划系统需生成安全、舒适、高效的行驶轨迹[11] - 输入包括静态道路结构、动态参与者、占用空间等感知数据[11] - 输出为路径点序列,典型为8秒视野内每0.4秒一个点共20个点[11] - 分为全局路径规划、行为规划和轨迹规划三个层级[12] 规划技术方法 - 搜索、采样和优化是规划三大核心工具[24] - 混合A*算法通过考虑车辆运动学改进A*算法[28] - 采样方法通过参数空间采样解决优化问题[37] - 优化分为凸优化和非凸优化,后者依赖初始解[41] 工业实践 - 路径-速度解耦方法解决约95%问题,耦合方案性能更高但实现复杂[52] - 百度Apollo EM规划器采用迭代期望最大化步骤降低计算复杂度[56] - 时空联合规划处理剩余5%复杂动态交互场景[59] - 特斯拉采用数据驱动与物理检查结合的混合系统[117] 决策系统 - 决策本质是注重交互的行为规划,处理不确定性和交互问题[68] - MDP和POMDP框架将重点从几何转向概率[69] - MPDM通过有限离散语义级策略集合简化POMDP问题[102] - 应急规划生成多条潜在轨迹应对不同未来情景[112] 神经网络应用 - 神经网络可增强规划器实时性能,实现数量级加速[130] - 端到端神经网络规划器将预测、决策和规划结合成单一网络[133] - 世界模型最终形式可能是由MCTS增强的原生多模态大模型[138] - 神经网络从树结构中提取知识,形成正反馈循环[142] 发展趋势 - 规划架构趋向"端到端",更多模块被整合到单一系统[151] - 机器学习组件在规划中应用比例持续增加[151] - 算法从理论完美向工程实用演进,如Value Iteration到MCTS[153] - 确定性场景规划成熟,随机性场景决策仍是挑战[153]