Workflow
多模态大语言模型
icon
搜索文档
舍弃自回归!国内团队打造纯扩散多模态大模型LLaDA-V,理解任务新SOTA
机器之心· 2025-05-27 03:23
核心观点 - 中国人民大学高瓴人工智能学院与蚂蚁集团合作推出LLaDA-V,这是首个纯扩散多模态大语言模型(MLLM),挑战了自回归模型在多模态领域的主导地位 [1] - LLaDA-V基于前期发布的LLaDA扩散模型拓展至多模态,采用视觉编码器(SigLIP 2)和MLP连接器实现多模态对齐,全程采用离散扩散机制 [2] - 模型在11项多模态任务中超越自回归基线LLaMA3-V,并在MMMU等多学科知识基准上展现更强数据可扩展性 [5] - 纯扩散架构性能达到SOTA,显著缩小与顶尖自回归模型Qwen2-VL的差距(MMStar基准60.1 vs 60.7) [8][10] 技术架构 - 采用"视觉编码器+MLP投影器+语言模型"经典架构,视觉特征通过SigLIP 2提取并映射至LLaDA嵌入空间 [15] - 创新性使用双向注意力机制,消融实验证明其优于对话因果注意力机制 [15] - 训练时仅对回复部分随机掩码,损失函数聚焦掩码区域;推理采用反向去噪过程,结合低置信度重掩码策略提升生成质量 [15] 性能表现 - 多模态理解任务中超越混合架构(如MetaMorph、Show-o)和纯扩散模型,达到当前最佳性能 [8] - 尽管LLaDA-8B纯文本能力弱于LLaMA3-8B,但LLaDA-V在多模态任务中反超,证明扩散架构的独特优势 [5] - 在MMMU等需要复杂推理的基准上,数据可扩展性显著优于自回归模型 [5] 应用场景 - 成功实现复杂视觉场景理解,如精准描述阿尔卑斯山景的层次感与空间关系(绿色小路、行人、教堂、薄雾群山等细节) [13] - 支持多轮多模态对话,通过掩码扩散机制生成连贯回复 [15] 开源计划 - 团队预计近期开源训练推理代码及模型权重 [3] - 项目已发布论文(arXiv:2505.16933)和代码仓库(GitHub/ML-GSAI/LLaDA-V) [6]
字节跳动&清华大学开源多模态时序大模型ChatTS,可实现时序数据对话与推理
机器之心· 2025-05-22 10:25
该工作由字节跳动 ByteBrain 团队 × 清华大学合作完成。第一作者为清华大学三年级博士生谢哲,主要研究方向为时序多模态 LLM、异常检测和根因定 位。第二作者和第三作者分别为李则言和何晓,均来自字节跳动。通讯作者分别为字节跳动研究科学家张铁赢和清华大学计算机系副教授裴丹。 近年来,多模态大语言模型(MLLM)发展迅速,并在图像、视频、音频等领域取得了突破性成果。然而,相较于这些研究较为成熟的模态,时间序列这一 类型的数据与大模型结合的系统研究却较为匮乏。 尽管已经有 TimeLLM 等工作尝试将 LLM 应用于时序任务,但这些研究大多局限于预测类任务,无法满足更复杂的理解与推理需求。随着 LLM 在 AIOps、金融等需要处理时序数据的应用场景中应用愈发广泛,时序问答、推理的能力已成为多模态智能系统的一项基础能力需求。 为此,我们提出了 ChatTS,一种 原生支持多变量时序问答与推理的多模态 LLM 。ChatTS 引来了 HuggingFace 产品负责人 Victor Mustar,以及 SparkNLP 项目负责人 Maziyar Panahi 等人的转发和点赞: ChatTS 论文已经成功入 ...
ICML 2025 Spotlight | 多模态大模型暴露短板?EMMA基准深度揭秘多模态推理能力
机器之心· 2025-05-20 04:58
EMMA基准的核心观点 - EMMA基准揭示了当前多模态大语言模型(MLLMs)在深度视觉与文本融合推理上的重大缺陷,即使最先进模型如GPT-4o、Gemini-2.5-pro-exp-03-25等表现仍落后人类专家超20%[3][4][13] - 该基准通过数学、物理、化学、代码四大领域任务,要求模型必须同时深度依赖视觉和文本信息才能解决问题,突破了传统文本主导或浅层视觉感知的测试局限[9][13] - 核心发现包括:思维链(CoT)提示对视觉密集型任务效果有限甚至负面、测试时计算扩展难以弥补视觉推理短板、视觉空间模拟错误占比高达52.83%[13][18][21] 模型性能表现 - 人类专家在EMMA-mini上的整体准确率达77.75%,显著高于所有模型,其中化学领域表现最佳(86%)[17] - 闭源模型中Gemini-2.0-Flash-Thinking-0121以48%准确率领先,开源模型Qwen2-VL-72B-Instruct达37.25%,均未突破50%门槛[17] - GPT-4o在物理领域表现最佳(44%),但在化学领域仅33%,显示跨学科能力不均衡[17] 数据集构建特点 - 包含2,788个问题,其中1,796个为专家新构建,覆盖数学(892题)、物理(156题)、化学(1,176题)、代码(564题)四大领域[16] - 采用严格筛选机制,排除仅凭文本或简单图文描述可解决的问题,确保必须进行真多模态推理[16] - 每个问题标注细粒度技能标签(如2D变换、3D场模拟等),支持模型能力画像分析[13][16] 技术瓶颈分析 - 视觉推理错误占比超50%,显著高于感知错误(30.19%)和文本推理错误,成为核心瓶颈[21] - 模型依赖结构化文本步骤推理,缺乏人类式视觉化思考和空间模拟能力[6][13] - 模态间信息密度差异导致预训练阶段特征对齐不足,且缺乏视觉状态动态更新机制[23] 未来发展方向 - 需开发视觉动作推理能力,实现跨模态动态协作而非当前语言主导模式[23] - 应突破传统CoT范式,建立新型视觉推理机制以解决空间模拟缺陷[13][18] - 开源社区已发布完整代码、数据和基准(含HuggingFace数据集),加速技术迭代[4]
鹅厂放大招,混元图像2.0「边说边画」:描述完,图也生成好了
量子位· 2025-05-16 03:39
腾讯混元图像2.0模型发布 - 腾讯发布混元图像2.0模型(Hunyuan Image 2.0),首次实现毫秒级响应,支持边说边画实时生成,用户描述与绘制过程同步进行,体验流畅[1] - 模型支持实时绘画板功能,用户可手绘元素并辅以文字说明,系统根据草图实时生成图像[2][3] - 提供多种交互方式包括语音输入(中英文)和上传参考图,参考图可提取主体或轮廓特征并调整约束强度[18][19][21] 模型性能特点 - 模型参数相比HunyuanDiT提升一个数量级,更大模型尺寸保障性能上限[37] - 采用自研超高压缩倍率图像编解码器,优化信息瓶颈层并强化对抗训练,显著降低生图时耗[38] - 适配多模态大语言模型(MLLM)作为文本编码器,语义遵从能力大幅提升,在GenEval测试中指标远超竞品[39][40] 技术创新点 - 通过强化学习后训练(包括通用后训练与美学后训练)提升图像生成真实感[41] - 采用自研对抗蒸馏方案,基于隐空间一致性模型实现少步高质量生成[42] - 模型经过全尺度多维度强化学习训练,在多轮图像生成和实时交互方面表现突出[36][46] 应用功能展示 - 支持16:9比例生图效果更佳,保持角色一致性能力优秀,输入补充描述时主体特征稳定[12][13] - 可处理多种风格包括真实场景、动漫风、编织风等,提供画面优化功能自动调整构图、景深和光影[14][16][27] - 示例显示上传简笔画可一键上色,上传蛋糕照片可结合文本指令生成新图像[22][25] 行业动态 - 腾讯混元团队预告将发布原生多模态图像生成大模型,重点关注多轮生成和实时交互体验[45] - 模型技术细节将通过后续技术报告披露,官网已开放访问[43][47]
GPT-4o不敌Qwen,无一模型及格!UC伯克利/港大等联合团队提出多模态新基准:考察多视图理解能力
量子位· 2025-05-14 06:07
多视图理解推理新标准 - 多视图理解指从不同视角整合视觉信息实现理解决策,对机器人在复杂环境中执行任务至关重要[1] - 过去因评估基准稀缺导致研究进展缓慢,UC伯克利等机构联合推出All-Angles Bench填补空白[2] - 该基准包含90个真实场景下2100组人工标注多视图问答对,数据集和评测代码已开源[2][3] 数据集构建 - 数据来源于EGO4D-EXO和EgoHumans数据集,涵盖六大挑战性任务:计数、属性识别、相对距离、相对方向、物体操控和相机位姿估计[8] - 构建过程分三阶段:1) 用GPT设计任务相关问题 2) 人工标注细化问题并交叉检查 3) 生成视角对应的成对问题并进行质量控制[12] 模型性能评估 - 测试27个领先MLLMs(包括GPT-4o、Gemini-2.0-Flash等),发现与人类水平存在显著差距[4][14] - 人类在相机位姿估计任务准确率达88.9%,顶尖模型落后超50%[16] - 开源模型Ovis2-34B和Qwen2.5-VL-72B在方向敏感任务上超越闭源模型[17] 关键发现 - 模型在成对问答中表现不一致:GPT-4o在相对距离任务IC得分达70%,所有模型在方向变化任务表现最差[20][22][23] - 跨视角整合碎片化信息能力弱,如GPT-4o会统计单视角最大数量而非跨视角总和[24][25] - 思维链方法对部分模型提升有限,需专门多视图训练实现根本性改进[31][32] - 相机位姿估计能力薄弱,难以对齐不同视角的变换[34]
推出金融交易AI Agent,可全天候智能盯盘,这家新加坡金融企业获1000万美元融资|早起看早期
36氪· 2025-05-12 23:56
公司融资与产品发布 - 新加坡人工智能金融科技公司RockFlow完成1000万美元A1轮融资 由头部互联网公司创始人领投 老股东持续加注 资金将用于提升AI技术和推出金融AI Agent Bobby [3] - 公司此前获得硅谷顶级美元基金数千万美元投资 目前在全球有5个办公室 业务覆盖30多个国家的9种语言 [4] - 金融AI Agent产品Bobby将于近期全球上线 团队来自人工智能、金融数学和投资交易等多领域 创始人Vakee赖蕴琦曾主导投资20多家中美、以色列高科技公司 [6] 技术架构与产品功能 - RockFlow基于自研架构 结合多模态大语言模型(LLM)、Fin-Tuning、RAG、MultiAgent和CoT等前沿技术 开发了适合金融投资场景的AI Agent架构 提升模型理解生成能力和多源数据分析效率 [4] - AI Agent将投资交易流程抽象为实时信息获取、分析、交易策略构建、订单执行四大核心环节 解决"买什么"和"怎么买"痛点 [5] - 产品功能包括:实时监控市场动态并分析财务数据/社交媒体情绪/公司公告 一键下单 根据用户收益目标和风险偏好生成个性化投资配置和交易策略 通过自然语言生成复杂条件订单并自动执行定投任务 实现止盈止损和仓位管理 [5][6] 行业定位与产品差异化 - 公司认为AI Agent在金融投资领域机会巨大 但该领域Agent数量和管理复杂度远高于其他行业 [4] - 创始人强调金融领域对专业性、容错率和时效性要求极高 产品需做到低成本、高效和结果可控 因此采用独特的multi-Agent技术路线实现全周期交易体验 [6] - 2023年4月推出的TradeGPT是全球首个交易AI产品 利用多模态LLM能力实时分析市场信息和量价数据 结合自研AI量化模型生成高质量交易机会 [4] 产品个性化案例 - AI Agent能识别用户兴趣点并推荐投资机会 例如用户提及使用多邻国学习新语言并表达投资意愿时 会分析标的优势及风险 生成符合期望的策略 [6]
理想汽车MCAF重构辅助驾驶视觉认知新范式
理想TOP2· 2025-04-25 12:43
以下文章来源于AcademicDaily ,作者AcademicDaily AcademicDaily . AcademicDaily是一个跟踪、推荐和解读大模型等AI成果的技术交流平台,致力于传播和分享前沿技术。 MCAF在理想内部被称为自动驾驶第三只眼。 兼容理想自研的Mind GPT-3o 与 BEV 大模型,无需重新训练。 MCAF是一个 多模态粗到细注意力聚焦框架,核心解决的是长视频理解的关键瓶颈。 当前视频理解领域对长视频(>5分钟)的处理存在显著缺陷,主流方法(如Video-MLLM)依赖全局压缩或均匀采样,导致细 节丢失和冗余计算。MCAF直接针对这一问题,通过多模态分层注意力和时间扩展机制,在信息保留与计算效率之间找到了平 衡点,这是其核心价值。 在平均时长达60分钟的Video-MME数据集上,MCAF超越其他代理方法(如VideoTree、DrVideo)约3-5个百分点。 不同于VideoTree等需要额外奖励模型评估置信度,MCAF利用单一LLM完成生成-评估-调整闭环。这不仅简化了架构(如代码 实现仅需1个LLM接口),还避免了多模型协同的兼容性问题,更适合实际部署。 不过在NEx ...
10倍吞吐提升无损性能:多模态适用的KV cache量化策略来了,即插即用无需改原模型
量子位· 2025-04-03 02:12
CalibQuant团队 投稿 量子位 | 公众号 QbitAI 在InternVL-2.5上实现 10倍吞吐量提升 ,模型性能几乎无损失。 最新1-bit多模态大模型KV cache量化方案 CalibQuant 来了。 通过结合后缩放和校准方法,可显著降低显存与计算成本, 无需改动原模 型即可直接使用 。 即插即用、无缝集成 多模态大语言模型在各种应用中展现出了卓越的性能。然而,它们在部署过程中的计算开销仍然是一个关键瓶颈。 虽然KV cache通过用显存换计算在一定程度上提高了推理效率,但随着KV cache的增大,显存占用不断增加,吞吐量受到了极大限制。 为了解决这一挑战,作者提出了CalibQuant,一种简单却高效的视觉KV cache量化策略,能够大幅降低显存和计算开销。具体来说, CalibQuant引入了一种极端的1比特量化方案, 采用了针对视觉KV cache内在模式设计的后缩放和校准技术,在保证高效性的同时,不牺牲 模型性能。 作者通过利用Triton进行runtime优化,在InternVL-2.5模型上实现了10倍的吞吐量提升。这一方法具有即插即用的特性,能够无缝集成到各 种现有的多 ...
长视频理解新突破!Mamba混合架构让显存消耗腰斩,处理10万视频token不费力
量子位· 2025-03-27 04:16
模型架构创新 - 提出Mamba-Transformer混合架构Vamba模型 通过改进架构设计而非压缩视频token来提升处理效率 [1][2] - 将传统因果自注意力分解为文本交叉注意力+视频Mamba-2模块的双路径设计 计算复杂度从二次降至线性 [7] - Mamba-2模块采用选择性扫描机制 在更新视频token时保持全局序列信息检索能力 [7] 性能突破 - 同等硬件下视频帧处理能力达传统Transformer的4倍 训练内存消耗降低超50% [4] - 单步训练速度实现翻倍提升 在128帧以上长视频场景运行时间与显存需求下降超50% [4][9] - LVBench长视频理解基准性能提升4.3% 完整保留原始视频时空特征避免信息丢失 [5][10] 技术实现细节 - 视频编码采用CLIP/SigLIP编码器 每帧转换为196个token 512帧视频对应10万token量级 [6] - 文本处理保留因果自注意力机制 通过交叉注意力实现视觉-语义对齐 [7] - 开源代码库包含模型权重(Qwen2-VL-7B)、训练推理脚本及7B参数规模预训练模型 [11] 应用场景优势 - 支持128帧以上超长视频理解 准确描述内容并回答用户提问 [9] - 在中短时长视频任务中同样展现竞争力 覆盖全视频时长区间的基准测试 [10] - 研究团队来自滑铁卢大学、多伦多大学及零一万物等机构 产学研协同创新 [2]