VLA (Vision Language Action) 模型
搜索文档
基于313篇VLA论文的综述与1661字压缩版
理想TOP2· 2025-09-25 13:33
VLA模型综述核心观点 - VLA模型的出现标志着机器人技术从传统基于策略的控制向通用机器人技术的范式转变,将视觉语言模型从被动的序列生成器重构为能够在复杂动态环境中进行主动操作和决策的智能体[1][12] - 该综述对VLA方法进行清晰的分类和系统性的回顾,基于300多项最新研究,将VLA方法主要分为四类:基于自回归、基于扩散、基于强化学习以及混合与专用方法[1][2][12] - VLA模型通过整合视觉编码器的表征能力、大语言模型的推理能力、强化学习与控制框架的决策能力,有望弥合"感知-理解-动作"的鸿沟,成为实现通用具身智能的核心路径[38][39] VLA方法分类与特点 基于自回归的模型 - 核心思想是将动作序列视为时间依赖过程,逐步生成动作,通过统一的多模态Transformer实现跨任务的泛化[4][46] - 创新点包括结合大语言模型进行链式思考和分层规划处理长时程和复杂任务,直接将语言指令映射为运动轨迹并通过视频预训练增强时间建模能力[4][47][48] - 采用层级规划、动态推理、量化和并行解码等技术减少计算冗余和延迟,典型模型包括Gato、RT-1/RT-2、PaLM-E等[4][48] 基于扩散的模型 - 核心思想是将动作生成视为一个条件去噪过程,能够对多模态的动作分布进行建模,将策略学习重新解释为视频生成[5][59] - 利用几何感知方法确保动作的物理一致性,利用Transformer统一处理视觉、语言和动作等异构模态实现灵活的目标条件化[5][63] - 出现轻量化设计以降低训练成本,发展出双系统/三系统等认知启发式架构提升任务性能和可解释性,典型模型包括SE(3)-DiffusionFields、Dita等[5][63][67] 基于强化学习的模型 - 核心思想是整合视觉语言模型与强化学习,利用视觉和语言输入在交互式环境中生成上下文感知的动作[6][72] - 利用视觉语言模型从人类演示中学习奖励代理简化奖励工程,提出约束学习对齐机制防止高风险行为同时不牺牲任务性能[6][73] - 结合离线学习和在线学习实现安全高效的训练,采用量化、剪枝和知识蒸馏等方法压缩模型提高推理速度并减少内存占用[6][73] 混合与专用方法 - 混合架构结合不同范式,利用扩散生成平滑的轨迹同时保留自回归模型的推理能力,典型代表如HybridVLA[7][80] - 从早期的特征拼接发展到显式建模几何、功能可见性和空间约束的3D感知架构,如CLIPort、3D-VLA等[7][80][82] - 将VLA框架扩展到自动驾驶、人形机器人控制和图形用户界面交互等特定领域,通过大规模多模态数据集和可扩展架构构建通用机器人智能体[7][80][83] 数据集与仿真平台 - VLA模型的发展严重依赖高质量数据集,真实世界数据集如Open X-Embodiment整合了来自21个机构的22个机器人数据集,包含527项技能和160,266个任务[8][35][99] - 模拟数据集如ALFRED、RLBench和CARLA为大规模、可控和安全的模型训练与评估提供了环境,模拟器如THOR、Habitat、MuJoCo和Isaac Gym为开发和评估智能机器人在多样化交互环境中的能力提供了平台[8][35][41] - 自动驾驶领域的数据集提供包含相机图像、激光雷达点云、雷达信号和高清地图在内的多模态传感器数据,但大多数公开数据集是在开环场景下采集的,主要反映正常驾驶行为[101][102] 核心挑战与未来机遇 - 核心挑战包括数据稀缺性、架构异构性、实时性约束和评估局限性,真实世界机器人交互数据的规模和多样性仍然不足,大规模Transformer架构的推理速度严重限制了其在需要毫秒级响应的真实机器人上的应用[9][43] - 未来机遇包括实现语言、视觉和行动的深度耦合使VLA演变为能够联合建模环境、推理和交互的"世界模型",发展能够基于因果定律进行探索和验证的模型[10][39] - 结合高保真模拟和合成数据生成构建超大规模轨迹数据集,建立风险评估、可解释性和问责制的标准化框架,将VLA从实验室工具转变为社会中值得信赖的合作伙伴[10][39]