Workflow
LeapfrogDiffusionModel(LED)
icon
搜索文档
基于扩散模型的多智能体轨迹预测方法1v6小班课来了!
自动驾驶之心· 2025-08-11 05:45
课题简介 - 核心观点:研究基于扩散模型的多智能体轨迹预测方法,解决自动驾驶、智能监控和机器人导航等场景中的轨迹预测难题 [1] - 传统方法依赖循环神经网络、卷积网络或图神经网络,生成模型如GAN和CVAE效率不高 [1] - 扩散模型通过逐步去噪实现复杂分布生成,在轨迹预测中显著提升多模态建模能力 [1] - LeapfrogDiffusionModel(LED)采用可训练跳跃初始化器,减少去噪步骤并加速19–30倍,在NBA/NFL/SDD/ETHUCY等数据集上提升精度 [1] - MixedGaussianFlow(MGF)构建混合高斯先验匹配多峰分布,在UCY/ETH和SDD数据集上达到最先进性能 [1] - Pattern Memory-based Diffusion Model(MPMNet)聚类人类运动模式构建记忆库,引导生成多样合理轨迹 [1] 研究目标与预期成果 - 综合利用扩散生成机制建模轨迹不确定性,融合社会交互建模与条件控制机制 [2] - 在ETH、UCY、SDD等公开数据集验证,与LED、MGF、SingularTrajectory等方法系统比较 [2] - 预期产出包括算法框架、定量与可视化展示、高水平论文,应用于自动驾驶、智能监控和服务机器人领域 [2] 课程目的 - 系统掌握轨迹预测与扩散模型理论知识,形成清晰体系 [5] - 结合模型理论与代码实践,复现论文并开发新模型 [5] - 积累论文写作方法论,获得修稿指导与投稿建议 [5] 招生对象 - 轨迹预测与自动驾驶方向的本硕博学生 [7] - 申硕申博、国外留学需提升简历者 [7] - 从事自动驾驶轨迹预测或diffusion领域工作需提升算法理论者 [7] 课程收获 - 经典与前沿论文分析、代码实现、创新点与baseline [7] - 选题方法、实验方法、写作方法、投稿建议 [7] - 12周在线科研+2周论文指导+10周论文维护期,产出论文初稿 [8] 招生要求 - 基础要求:具备深度学习基础,熟悉Python与PyTorch [9] - 硬件要求:至少16GB内存和4GB显存NVIDIA GPU(如RTX 3080) [11] - 学习要求:掌握Python编程、PyTorch框架、Linux开发调试能力 [14] 课程亮点 - "2+1"式师资:名校教授+行业导师+科研班主任全程跟踪 [15][16] - 全周期服务:入学测试、个性化教学、学术复习与报告指导 [17] - 高学术标准:产出论文初稿、结业证书、优秀学员推荐信 [18] 课程资源 - 数据集:提供ETH、UCY、SDD等公开行人或车辆轨迹数据集 [19] - Baseline代码:提供LED、SingularTrajectory、MGF、MPMNet等开源框架 [20][21] - 必读论文:包括CVPR 2023/2024、NeurIPS 2024等顶会论文 [22] 课程大纲 - 先导课:轨迹预测任务与扩散模型基础 [23] - 经典方法:LSTM、Social Pooling、Graph-based model [23] - 扩散模型专题:LED加速推理、MGF多模态多样性、MPMNet运动模式引导 [23] - 高级话题:条件控制、社会交互建模、不确定性分析 [23] - 论文写作:结构设计、创新点表达、实验可视化 [23] 服务方式 - 班主任督学+腾讯会议直播+小鹅通回放 [25] - 课程周期:12周科研+2周指导+10周维护期 [29] - 基础补齐:提供先修课程与基础论文 [25]