Workflow
GSPO
icon
搜索文档
如何准备RL面试相关的问题?
自动驾驶之心· 2025-09-12 16:03
GRPO策略类型分析 - GRPO最初设计和常用实现是在线策略(on-policy)方法 其优势估计依赖于当前策略生成的样本[3][6] - 通过重要性采样等技术可扩展为离线策略(off-policy)版本 已有工作研究这种扩展在样本效率和稳定性方面的权衡[3][4] - 原始GRPO使用当前策略生成的一组候选完成来计算组内相对优势 并在此批次上构造类似PPO的代理目标更新策略[5][6] 重要性采样技术 - 重要性采样是离线策略评估的核心方法 通过行为策略数据评估目标策略价值[8] - 核心公式使用重要性权重修正分布差异 单步权重为$w_t=\frac{\pi_t(a_t|s_t)}{\pi_b(a_t|s_t)}$ 轨迹权重为$W_T=\prod_{t=0}^T w_t$[12][13] - 加权重要性采样通过归一化权重降低方差 公式为${\hat{V}}^{\pi_t}(s_0)=\sum_{i=1}^N\left(\frac{W_T^{(i)}}{\sum_{j=1}^N W_T^{(j)}}\right)\cdot G_0^{(i)}$[16] GSPO与DAPO算法改进 - GSPO解决GRPO/PPO在长序列训练中的高方差问题 将重要性比率提升到序列级并做长度归一化[18][22] - DAPO针对长思维链训练提出四项工程技术:非对称裁剪 动态采样 token级策略梯度损失和过长奖励整形[20][24] - GSPO目标函数为$J_{\mathrm{GSPO}}(\theta)=\mathbb{E}_{x\sim D,\{y_i\}\sim\pi_{\mathrm{id}}}\left[\frac{1}{G}\sum_{i=1}^G\operatorname*{min}\Bigl(s_i(\theta)\hat{A}_i,\mathrm{clip}(s_i(\theta),1-\varepsilon,1+\varepsilon)\hat{A}_i\Bigr)\right]$[23] 熵崩溃问题与解决方案 - 熵崩溃指策略熵急速下降导致确定性输出 在训练阶段需要避免以保持探索能力[27][33] - 解决方案包括熵正则化 KL约束 非对称裁剪 动态采样和序列级重要性比率[32][37] - 监控指标包括策略熵曲线 KL距离变化和奖励分布特征[35][36] 奖励劫持与熵崩溃关系 - 奖励劫持是目标错位问题 熵崩溃是策略行为失衡症状 二者常相互强化形成恶性循环[41][51] - 奖励劫持导致策略快速确定化 熵崩溃使系统难以跳出奖励劫持的局部最优[43][44] - 解决方案需从奖励设计和训练稳定性两端入手 包括修正奖励函数 增加惩罚项和使用多样化评价信号[47][51] MLA加速推理技术 - MLA通过低秩潜在向量压缩Key/Value 只缓存潜在向量而非完整K/V[52][55] - 在内存带宽受限场景可减少45% KV缓存内存 实现1.3-1.8倍推理加速[52][64] - 技术实现包括潜在向量压缩和实时上投影计算 公式为$C_t = X_t W_C$ $K = C W_{K\_up}$ $V = C W_{V\_up}$[54][61]