自动驾驶感知

搜索文档
自动驾驶基础模型应该以能力为导向,而不仅是局限于方法本身
自动驾驶之心· 2025-09-16 23:33
基础模型在自动驾驶感知领域的革命性变革 - 基础模型正将自动驾驶感知从特定任务深度学习模型转变为海量多样化数据集训练的多功能通用架构 [2] - 这些模型通过自监督或无监督学习策略在大规模数据集上预训练 基于Transformer等架构构建 能有效建模数据中的复杂交互关系 [4] - 基础模型展现出广泛泛化能力、高效迁移学习能力和对特定任务标注数据集依赖降低等显著优势 [4] 全新分类框架与核心能力 - 提出围绕动态驾驶环境中稳健性能需求的四项核心能力分类框架:通用知识、空间理解、多传感器鲁棒性和时序推理 [5] - 与传统"基于方法"的综述不同 该框架优先关注概念设计原则 提供"以能力为导向"的模型开发指导 [6] - 框架更清晰地揭示了基础模型的核心特性 为研究人员识别和解决特定缺陷提供系统性指导 [6] 通用知识能力 - 通用知识使模型能适应广泛驾驶场景 包括罕见或未见情况 并能合理推断可能结果和对未知智能体进行逻辑推理 [5] - 通过特征级蒸馏、伪标签监督和直接集成三种核心机制将基础模型集成到自动驾驶技术栈中 [37] - 视觉基础模型(VFMs)可直接集成到2D图像流水线 也能扩展至3D感知流水线 提供高层语义理解 [40] 空间理解能力 - 空间理解让自动驾驶车辆构建环境的连贯3D表示 捕捉物体身份、几何形状与上下文关系 [63] - 体积模型通过将传感器输入解读为3D场景的投影 构建密集、整体的环境表示 [65] - 3D掩码自动编码器通过"掩码输入-重建输出"策略 迫使模型学习场景级结构、物体边界和空间关系 [73] 多传感器鲁棒性 - 多传感器鲁棒性指系统在环境变化、传感器噪声或硬件性能下降时仍能保持感知精度与稳定性的能力 [80] - 跨模态对比学习构建统一表示空间 整合相机、激光雷达、毫米波雷达等不同传感器类型的互补信息 [82] - 多模态掩码自动编码器扩展至处理多模态输入 通过自监督重建任务让模型捕捉互补线索 [97] 时序推理能力 - 时序理解是对场景随时间演变过程进行推理 包括捕捉物体运动、跟踪遮挡物以及预测未来事件 [109] - 时序一致的4D预测模型从传感器观测序列中预测复杂动态环境的演变过程 [113] - 扩散概率模型能够表示复杂的多模态概率分布 成为解决未来场景不确定性问题的理想方案 [115] 技术实现与方法创新 - 知识蒸馏通过训练学生模型模仿教师模型的输出或内部行为 实现三类实现方式:输出级蒸馏、特征级蒸馏和关系级蒸馏 [17] - 神经辐射场(NeRF)采用隐式表示将场景建模为连续函数 通过可微体素渲染方程实现照片级真实感渲染 [24] - 3D高斯溅射(3DGS)采用显式表示将场景建模为一组3D高斯椭球体集合 通过可微前向光栅化器大幅提升渲染速度 [25] 模型对比与特性分析 - 基础模型相较于传统深度学习模型 在自动驾驶感知中的核心优势在于更优的泛化性和适应性 [36] - 视觉语言模型(VLMs)融合视觉基础模型与大语言模型的优势 实现视觉内容与文本语义对齐的联合表征 [35] - 大语言模型(LLMs)基于Transformer架构在海量文本语料上训练 具备强大的抽象、推理与指令遵循能力 [51] 当前挑战与未来方向 - 域间隙问题是核心挑战之一 需弥合基础模型预训练通用知识与自动驾驶感知特定需求之间的间隙 [59] - 幻觉风险带来严重安全风险 需深入探究故障根源并开发主动缓解策略 [60] - 延迟与效率问题与自动驾驶实时处理需求存在直接冲突 需通过模型优化技术构建更小、更高效的模型变体 [61]