机器人模型即服务(RMaaS)

搜索文档
Physical Intelligence 核心技术团队分享:物理世界的“Vibe Coding”如何实现?
海外独角兽· 2025-08-23 12:04
技术演进路径 - VLA是VLM在机器人领域的应用 能够接收图像和文本输入并整合机器人状态信息 直接输出控制机器人的动作指令 与文本生成模型存在本质差异[6][12] - VLM在LLM基础上拓展视觉感知能力 能处理纯文本输入和涉及视觉内容的复杂信息 训练流程已较完善[7] - VLA发展路径与VLM类似但起步稍晚 2024年下半年出现Gemini for Robotics等方案 仍属概念验证阶段[16] 机器人智能发展维度 - 能力指完成从未实现的复杂任务 π₀演示多步骤操作能力 执行偏差时主动调整 接近人类灵活应对能力[23] - 泛化指在陌生环境中正确执行任务 训练覆盖家庭环境越多 新环境表现越好 数据多样性是提升泛化关键路径[23][44] - 性能需提升任务成功率 稳定性 速度和鲁棒性 当前模型处于演示就绪而非部署就绪阶段 失败仍频繁[24][25] 数据管线构建 - 团队从头搭建数据引擎 超过一半工作集中在数据系统构建 收集和质量保障 六个月收集约1万小时机器人操作片段[30][37] - 数据涵盖数十个不同家庭环境和数百类任务 包括折叠衬衫 物品搬运和整理 更贴近真实生活场景[37] - 移动操控系统采集数据提升多样性 涵盖数百种不同场景 捕捉动态变化环境 任务复杂度从简单抓取扩展到细致操作[41][42] 算法架构创新 - 提出知识绝缘机制重构训练流程 将连续动作序列离散化为text-like tokens 截断梯度回传保护主干网络 训练速度提升10倍[47] - π₀.₅架构以pre-training的Transformer为核心 拓展Action Expert Transformer子模块 实现语义到物理执行高效衔接[50] - 采用软硬件解耦战略 将智能软件作为系统核心 降低对特定机器人硬件依赖 提升模型部署灵活性与效率[53] 开放世界部署挑战 - 数据缺口体现在数量和质量 机器人操作需物理交互闭环反馈时序数据 收集真实有效交互数据门槛高成本昂贵[54] - 性能不稳健是最大挑战 动作指令需高频率低延迟 需应对物理扰动和感知不确定性 存在时序错位问题[54][56] - 硬件平台迁移复杂 不同机器人在控制协议 感知系统和执行机制差异巨大 缺乏统一接口层[58] 未来发展方向 - 重点突破性能瓶颈 研发通用任务配方 构建覆盖多场景多任务的标准化评估体系 通过统一benchmark量化模型性能[60] - 构建通用可定制机器人智能生态 用户通过自然语言发布命令引导机器人完成复杂操作 降低使用门槛[61] - 推动软硬件深度融合 用户可设计定制硬件并注入智能算法 实现物理世界的vibe coding 可能催生机器人模型即服务新模式[61][62]