Workflow
时空视觉CoT
icon
搜索文档
FSDrive统一VLA和世界模型,推动自动驾驶迈向视觉推理
36氪· 2025-09-30 10:36
面向自动驾驶的多模态大模型在 "推理链" 上多以文字或符号为中介,易造成空间 - 时间关系模糊与细粒度信息丢失。FSDrive(FutureSightDrive)提出 "时空视觉 CoT"(Spatio-Temporal Chain-of-Thought),让模型直接 "以图思考",用统一的未来图像帧作为中间推理步骤,联合未来场景与感知结果进行 可视化推理。该方法在不改动原有 MLLM 架构的前提下,通过 "词表扩展 + 自回归视觉生成" 激活图像生成能力,并以 "由易到难" 的渐进式视觉 CoT 注 入物理先验。模型既充当 "世界模型" 预测未来,又作为 "逆动力学模型" 进行轨迹规划。 代码地址:https://github.com/MIV-XJTU/FSDrive 多模态大语言模型(MLLM)凭借世界知识与可解释推理能力,正加速进入端到端 "视觉 - 语言 - 动作"(VLA)自动驾驶范式。但现有做法多依赖离散文 本 CoT(如规则描述、坐标),本质上是对视觉信息的高度符号压缩,存在跨模态语义鸿沟与时空关系表征不足的问题。 核心问题:面向与物理世界深度交互的自动驾驶,思考过程更应接近 "模拟与想象" 的 ...
NeurIPS 2025 Spotlight | FSDrive统一VLA和世界模型,推动自动驾驶迈向视觉推理
机器之心· 2025-09-30 08:45
面向自动驾驶的多模态大模型在 "推理链" 上多以文字或符号为中介,易造成空间 - 时间关系模糊与细粒度信息丢失。FSDrive(FutureSightDrive)提出 "时空视觉 CoT"(Spatio-Temporal Chain-of-Thought),让模型直接 "以图思考",用统一的未来图像帧作为中间推理步骤,联合未来场景与感知结果进行可视化推理。该方法 在不改动原有 MLLM 架构的前提下,通过 "词表扩展 + 自回归视觉生成" 激活图像生成能力,并以 "由易到难" 的渐进式视觉 CoT 注入物理先验。模型既充当 "世 界模型" 预测未来,又作为 "逆动力学模型" 进行轨迹规划。 多模态大语言模型(MLLM)凭借世界知识与可解释推理能力,正加速进入端到端 "视觉 - 语言 - 动作"(VLA)自动驾驶范式。但现有做法多依赖离散文本 CoT (如规则描述、坐标),本质上是对视觉信息的高度符号压缩,存在跨模态语义鸿沟与时空关系表征不足的问题。 项目主页:https://miv-xjtu.github.io/FSDrive.github.io/ 论文链地址:https://arxiv.org/abs/25 ...