谷歌挑战英伟达,摩尔线程、沐曦内部人士怎么看?
第一财经·2025-12-18 14:06

文章核心观点 - 谷歌发布自研TPU引发市场对AI硬件技术范式从通用GPU转向专用芯片的讨论 英伟达市值一度蒸发超千亿美元[3] - 行业专家认为 GPU与TPU等专用芯片是“通才与专才”的分工 将长期共存而非简单替代[4][6] - AI算力的核心竞争力已从单卡算力转向大规模集群系统与全栈解决方案[7][8] 行业技术路线与竞争格局 - 谷歌能做TPU得益于其全栈整合能力 将模型跑在自家芯片上优化以实现成本性价比最大化 但绝大部分企业不具备此垂直整合能力[4] - GPU保持优势的原因在于其灵活度是“甜点” 能处在AI算法快速迭代的创新前沿[5] - 未来是多模态的 需要“理解世界 用三维构建世界 超高清传输世界” 全功能GPU的“图算一体”能力在跨域支持所有计算范式上具有不可替代的优势[5] - 英伟达在计算领域的“王者”地位得益于其建立的CUDA生态 能够联合所有开发者建设生态[5] - 任何芯片架构没有高低优劣之分 关键看场景 GPU和ASIC的架构几十年前就已存在 是超级稳态[6] - 当前大模型迭代速度非常快 按周计 按月计 任何基础模型远未到达收敛的时间点 通用GPU的泛化能力和适配性仍是核心竞争力[6] - 客户应用场景分散且层出不穷 GPU和类似TPU这样的ASIC会长期共存[6] - 未来超大型云服务公司可能在算法收敛稳定到一定阶段时选择定制专门的TPU 并在能力溢出时与其他厂商合作[6] 公司战略与实践 - 摩尔线程会继续坚持全功能GPU图算一体的路线[5] - 摩尔线程正在搭建自己的MUSA生态[5] - 摩尔线程目前有多个投入生产的千卡集群在运行 已处于生产期 支持训练和推理[7] - AI大模型的运行关键不在单卡算力 卡间互联的网络通信是非常复杂的架构 摩尔线程致力于提供端到端全栈的解决方案[7] - 沐曦认为AI基础设施的最大挑战在于明确产品本质 客户最终需要的是一个能够可靠支持大规模模型训练 推理与服务的通用算力平台 而非孤立的单卡或服务器[8] - 沐曦已在全国范围内部署了数千卡规模的集群 并成功完成了从传统模型到MoE模型乃至非Transformer架构模型的训练任务[8] 市场反应与行业地位 - 谷歌新一代AI模型Gemini 3系列发布后 英伟达市值一度蒸发超千亿美元[3] - 华尔街将英伟达推上市值榜首 证明了通用性GPU在当前历史阶段的主流地位[6] - 对于英伟达股价近期的波动 有观点认为这或是一种很好的“砍价方式”[6]